The hemicellulose-degrading enzyme system of the thermophilic bacterium *Clostridium stercorarium* – comparative characterisation and addition of new hemicellulolytic glycoside hydrolases

- Additional file 1 -

Broeker¹, Jannis (jannis.broeker@tum.de), Mechelke¹, Matthias (matthias.mechelke@tum.de), Baudrexl¹, Melanie (melanie.baudrexl@tum.de), Mennerich, Denise (denise.mennerich@tum.de), Hornburg^{2,3}, Daniel (hornburg@stanford.edu), Mann³, Matthias (mmann@biochem.mpg.de), Schwarz¹, Wolfgang H. (wolfgang.schwarz@tum.de), Liebl¹, Wolfgang (wliebl@wzw.tum.de), Zverlov^{1,4*}, Vladimir V. (vladimir.zverlov@tum.de)

- ¹ Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
- ² Present address: School of Medicine, Stanford University, 94305 Stanford, CA, USA
- ³ Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- ⁴ Institute of Molecular Genetics, Russian Academy of Science, Kurchatov Sq. 2, 123182 Moscow, Russia

* Corresponding author: Dr. Vladimir V. Zverlov

email: vladimir.zverlov@tum.de, Tel.: +49-8161-715474

accession number	protein name	sense primer (5'-3')	antisense primer (5'-3')
AGC67981.1	Bga2B	AACAGGAAAGTGTTGTTCAA	TTTCTCAAACTTAAACCATCCG
AGC67186.1	Bga2E	GACGTAAATACCATATCC	GCCAAGCACTGTTTCAGGAT
AGC67268.1	Bga2D	AATAGAGAAATTTTGCATC	AAAACCGTTTTTTACAGGTATTA
AGC67637.1	Bga2C	CTGCCCGTAAAAAAATACTG	TTCTATCTGTTCACGAATAATG
AGC68382.1	Uid2A	GATACGAAGCATGTGG	ATCTTTTATAGAAGCATAAAATTC
AGC67275.1	Bxl3B	GAAAACAAACCTGTTTATCT	CTGCACGCGCAGCACGG
AGC67337.1	Bgl3Z	GTAATACCAATTGTTGCAAG	TTTAATATTTGCATTCAGTGTATC
AGC67350.1	-	ACTTTGAAGGAAAAGATAG	ATACATGCCATCATTTTTCAGTA
AGC68204.1	-	ACGGTAAATAACAAAAGCCG	TGTAAATTTAAAATTACTGATATTGGC
AGC68338.1	Nag3A	GAACATGAAAATTTTCCGACTG	GTTACCGAAATTTCTCACTCTT
AGC68873.1	Cel9Z	GCAGGATATAATTATGGGG	CGGTTCAATTCCACTGACCA
AGC67515.1	Xyn10E	TTGACGGTAAAGGTTAAAAT	TTTACCCATGATTACTTTCTTC
AGC67677.1	Xyn10C	GAAACAACGGTTTATCATGAG	TCTTAATCTTAAAAATGCCTC
AGC67715.1	Xyn10B	TTTAACGATCAAACTTCTGCTG	TTCCCGCAACCGTGAAGGA
AGC67759.1	Xyn10D	GAAAATAAAACAGGCGGC	ACTGTTTAAAATTATTTTTTCCTCA
AGC68909.1	Xyn11A	GGGCGAATAATTTACGACAATG	AGTTCCTGATTTTGAGAATACAA
AGC68130.1	Man26A	ACCGGGAGGCAAAAAGGTTT	TTTTCCGCGATATTTTTTCAAATC
AGC68671.1	-	GACAAAAACAAGGTTGC	GTCGATTTTTGTAAGCTTATAAA
AGC67830.1	-	GGAAAAGTAAATATCGAAC	TATGCCTTCCATTTTTTCTACC
AGC67947.1	-	AGCTATACTACGGTTTT	CTCAGTGCAGTCGGTTAATC
AGC67128.1	-	GACCGGAAAAAATATCTTG	GTCCACCTGAATCTTAAACAC
AGC68208.1	Bxl31D	AAATTCAGTGATGGTTACTG	GAACCGTTCATTAACCGTTAT
AGC69232.1	Bga35A	GCGGTTTATCATTTGGA	CATTATTTTAAAAACTGCTTCATG
AGC68033.1	-	CCGTTCAGTAAGGAATGGG	GGATTTTATCCTGAGCCTTAA
AGC67890.1	Bxl39A	GCAAGGGAAATCACAATA	TTCAAGTCCAAAAAATTCATCC
AGC67716.1	Axh43A	AATAAATACCGGGAAACATCC	TTCGCTGAAATACCAGTAATC
AGC67945.1	Arf43A	TTGAAAAATAACTCTTCAGAACC	TCCTCTGCCGGTACTACC
AGC68110.1	Arf43C	CAGAATTCGAACATAAGAAC	TTCATAAACCTGTTTTTGATACTC
AGC68111.1	Abn43A	GAAACGAAGGATAATCGTGC	TTCAATGGCCCAAATACCGC
AGC67521.1	Xyl43B	CAGCCTGACAACAAAC	TTCAAATTCATATCTGAACCAG
AGC67885.1	Xyl43A	AGAAAACAGAGATTCAACC	GTCAGTACACAGAGTGAATG
AGC69509.1	Bxl43C	CGTTACCATAATCCTAT	CAGACTTATATCTTCTCTGTC
AGC67626.1	Arf51B	GCCAAATACGTAATCAAC	GTCAACCGTAATGCTGACTAC
AGC68692.1	Gal53A	TACTGCGAAGGAAGGAGG	TTCAGTTTCAGGTTCAGGTTC
AGC69355.1	Agu67A	AAACTGCCAAATTTCGGA	ATAAATTGTTCTCCCTTTTTCAT
AGC68061.1	Ram78A	AATCCTATGGGGTTTGTCATT	TTCCACAGTAACTTTGCTGAG
AGC69452.1	-	ATTGAAATTTCCGCACAG	CCACAGAAGTATTCCCAATTC
AGC67127.1	-	GCGGACGCTGAAGGG	CGCATTAAAACCGGGATTCAT
AGC68039.1	Xyn105F	GAAAATTATATTGATCTTGC	TCCCCCGCTGCCTAAAGC
AGC67892.1	-	CAGGAAAAAAAAGAAACC	TTTCTTTGAAACGCTTTTCAGC
AGC67946.1	-	AAGAAATACGACAATAATTA	TTTTTCCATTTCAGAGCATGC
AGC68044.1	-	GGTTATTATTTTCCGGATG	AATTCCTCCGTTATCAAGCC
AGC68046.1	-	TCTGTAAACGTGGAAATG	AATGAGCTCGGTCAGCATAA
AGC67967.1	-	GCTGAGATCCTGTTCAGGG	TCCGAGCAGCTTTTCCTTCA
AGC67053.1	-	GTGAAAATTATGGAGCATGTAT	TCTGGCTCGTATCCATACCA
AGC67292.1	-	TTAACCAACACGGAAAAAT	GCAGAAAGCAACAGGCAAC
AGC67072.1	RamB	TTTTTTAAAAATAGCCGGG	TTCAATATATATAAGCGGGGC
AGC68062.1	BglA	AATTCTGTGAGCGTGG	ATATTGGCTACAGGTAATCAAA
AGC69032.1	-	GAATCCACGAAGTTGG	AACGGGATATATTTTAACAGGC
AGC69275.1	ArfD	AGGAACTGGTCATTTACAG	GTTTGTTTCATATACCTTGACC

Table S1 PCR primer for the amplification of the 50 selected glycoside hydrolase genes of *C. stercorarium*.

Ligation in the pET-24c(+) vector war performed with Gibson Assembly. Therefore sense and antisense primer have a 5'-overlap with the vector: sense primer: TTAAGAAGGAGATATACATATG... (22 bp), antisense primer: GTGGTGGTGGTGGTGGTGCTCGA... (20 bp).

polysaccharides	final conc.	<i>p</i> NP-glycosides	final conc.
arabinan	0.5% w/v	α -L-arabinofuranoside	4 mM
arabinoxylan (wheat, soluble)	0.5% w/v	α -D-glucopyranoside	4 mM
arabinoxylan (wheat, insoluble)	0.5% w/v	β-D-glucopyranoside	4 mM
4-O-methyl-glucuronoxylan	0.5% w/v	α-D-galactopyranoside 4 mM	
xylan (birch)	0.5% w/v	β-D-galactopyranoside 4 ml	
xylan (oat spelt)	0.5% w/v	α-D-mannopyranoside 4 mM	
xyloglucan	0.5% w/v	β-D-mannopyranoside 4 mM	
avicel	0.25% w/v	α -L-rhamnopyranoside	4 mM
β-glucan (barley)	0.5% w/v	α -D-xylopyranoside	4 mM
curdlan	0.5% w/v	β-D-xylopyranoside	4 mM
laminarin	0.5% w/v	β-D-glucuronide	4 mM
lichenin	0.5% w/v	N-acetyl-β-D-glucosaminide	4 mM
pachyman	0.5% w/v		
pullulan	0.5% w/v		
arabinogalactan (larch)	0.5% w/v		
galactan (potato)	0.5% w/v		
galactan (lupin)	0.5% w/v		
pectic galactan (potato)	0.5% w/v		
pectic galactan (lupin)	0.5% w/v		
polygalacturonic acid	0.5% w/v		
mannan	0.5% w/v		
mannan (ivory nut)	0.5% w/v		
galactomannan (guar)	0.5% w/v		
glucomannan (konjac)	0.125% w/v		
gum arabic (acacia)	0.5% w/v		
inulin (dahlia tubers)	0.5% w/v		
sinistrin	0.5% w/v		
rhamnogalacturonan I	0.5% w/v		
chitosan	0.5% w/v		

Table S2 Polysaccharide and *p*-nitrophenyl substrates including the final concentration in enzymatic assays.

The polysaccharides used in this study were purchased from: Megazyme (Bray, Ireland): arabinan, wheat arabinoxylan (soluble and insoluble), xyloglucan, barley β -glucan, pachyman, arabinogalactan, potato and lupin galactan and pectic galactan, mannan, ivory nut mannan, galactomannan, glucomannan and rhamno-galacturonan I; Sigma-Aldrich (St. Louis, USA): birch xylan, oat spelt xylan, lichenin, polygalacturonic acid, gum arabic, inulin and chitosan; Serva electrophoresis (Heidelberg, Germany): curdlan and avicel; ICN Biochemical (Irvine, USA): pullulan; Alfa Aesar (Ward Hill, USA): laminarin; and Fresenius Kabi (Graz, Austria): sinistrin. Glucuronoxylan were bought from Sigma-Aldrich and Carbosynth (Compton, GB). The *p*NP-glycosides were purchased from: Carbosynth: α -L-arabinofuranoside, β -D-galactopyranoside, α -D-mannopyranoside, β -D-mannopyranoside and α -D-xylopyranoside; Sigma-Aldrich: α -D-glucopyranoside, α -L-rhamnopyranoside, β -D-xylopyranoside and β -D-glucuronide; Alfa Aesar: β -D-glucosaminide.

Table S3 Glycoside hydrolase (GH) families present in the C. stercorarium genome.

selected GH families:	GH2 (5), GH3 (5), GH9, GH10 (4), GH11, GH26, GH27, GH28 (2), GH29, GH31, GH35, GH38, GH39, GH43 (7), GH51, GH53, GH67, GH78, GH88, GH95, GH105 (5), GH115, GH127 (2), GHnc (4)
excluded	GH4, GH13 (5), GH15, GH18 (3), GH23 (2),
GH families:	GH36 (2), GH48, GH94 (2), GH112, GH130

Enzymes within 24 of 34 GH families were selected and produced in *E. coli*. The number of enzymes is indicated in brackets behind the GH family, if more than one enzyme is present.

Figure S1 SDS-PAGEs of 10 examples of the 50 *C. stercorarium* proteins recombinantly produced by *E. coli* and purified by IMAC. Purification steps comprises: crude cell extract (1), resuspended cell extract pellet (2), supernatant of the cell extract after centrifugation (3), flow through of IMAC (4) eluate of the IMAC (5), resuspended precipitate of the heat denaturation (6), purified protein solution (7), protein standards with 180, 130, 100, **70**, 55, 40, 35 and 25 kDa (P1) or 250, 150, 100, **75**, 50, 37, **25** and 20 kDa.

Figure S2 Schematic structure of the glycoside hydrolases with proven activity from *C. stercorarium*. Molecular masses are given in brackets. The size of each enzyme and domain is scaled according to the corresponding amino acid chain length. Classification of GH and CBM modules were obtained from the CAZy database [40]. Domain structure was obtained from the Pfam database [58]. The CAZy database lists only the two CBM3 modules for Cel9Z whereas the four listed CBM61 modules of Gal53A and the second CBM22 module of Xyn10C could not be identified using the Pfam database. Protein Gal53A was shortened in PCR at indicated (I) sites.

protein name	iBAQ SU	rank SU	iBAQ PE	rank PE
Bga2B	9,47	32 %	12,32	21 %
Bga2E	6,35	67 %	7,47	80 %
Bga2D	3,22	93 %	6,37	88 %
Bag2C	6,66	63 %	11,37	30 %
Uid2A	8,26	44 %	11,85	26 %
Bxl3B	7,12	57 %	8,48	69 %
Bgl3Z	11,16	16 %	12,67	18 %
AGC67350.1	3,44	92 %	8,97	63 %
AGC68204.1	6,40	66 %	9,54	56 %
Nag3A	4,80	81 %	7,88	75 %
Cel9Z	16,11	1 %	4,95	96 %
Xyn10E	5,48	75 %	8,98	63 %
Xyn10C	11,38	14 %	9,20	60 %
Xyn10B	9,07	35 %	-	-
Xyn10D	10,63	19 %	13,26	13 %
Xyn11A	14,27	3 %	-	-
Man26A	6,51	65 %	5,31	95 %
AGC68671.1	8,18	45 %	10,19	46 %
AGC67830.1	9,88	28 %	11,90	25 %
AGC67947.1	11,05	17 %	12,61	18 %
AGC67128.1	6,57	64 %	8,43	70 %
Bxl31D	-	-	5,92	91 %
Bga35A	6,28	68 %	8,86	64 %
AGC68033.1	6,11	69 %	7,66	78 %
Bxl39A	8,77	38 %	12,14	23 %
Axh43A	-	-	-	-
Arf43A	10,04	26 %	11,40	30 %
Arf43C	-	-	4,39	97 %
Abn43A	5,17	77 %	6,98	84 %
Xyl43B	6,57	64 %	10,25	46 %
Xyl43A	9,34	32 %	11,84	26 %
Bxl43C	5,71	73 %	9,49	57 %
Arf51B	10,46	21 %	12,99	15 %
Gal53A	7,64	52 %	5,46	93 %
AGC69355.1	6,63	63 %	10,79	38 %
Ram78A	2,46	96 %	7,70	77 %
AGC69452.1	8,94	36 %	11,15	33 %
AGC67127.1	-	-	3,42	99 %
Xyn105F	-	-	-	-
AGC67892.1	-	-	-	-
AGC67946.1	9,49	31 %	12,18	22 %
AGC68044.1	5,05	78 %	9,52	56 %
AGC68046.1	-	-	9,49	57 %
AGC67967.1	7,90	50 %	10,48	42 %
AGC67053.1	7,63	52 %	10,54	41 %
AGC67292.1	0,86	100 %	3,55	99 %
RamB	1,80	98 %	6,09	90 %
BglA	-	-	-	-
AGC69032.1	4,62	83 %	8,64	67 %
ArfD	4.30	86 %	7.95	74 %

Table S4 Studied enzymes in the secretome or intracellular proteome of C. stercorarium analysed by LC-MS/MS.

C. stercorarium was grown in GS2 medium with 0.5% w/v cellobiose for 24 h. The protein length normalised log2 protein intensities (iBAQ) and the percentage rank of the protein in the secretome (SU) and intracellular proteome (PE) are given. Some proteins weren't detected (-).

Figure S3 Hydrolytic products of different polysaccharides analysed by Thin-layer chromatography (TLC). Polysaccharides were hydrolysed by a) Xyn10C, b) Xyn11A, c) Xyn10D, d) Arf51B, e) Arf43C, f) Axh43A, g) Abn43A, h) Cel9Z, i) Man26A, j) Bga35A, k) Bga2B. The experiments were performed overnight (16 h) at pH 6.5 and 60 °C with 5.0 mg/L enzyme and 0.5% substrate in 0.1 M MOPS reaction buffer. Arabinan (A), soluble wheat arabinoxylan (AX(s)), insoluble wheat arabinoxylan (AX(i)), barley β -glucan (BBG), galactan lupin (G(L)), galactan potato (G(P)), galactomannan (GalM), glucomannan (GluM), glucuronoxylan (GX), lichenin (L), mannan (M), pectic galactan lupin (PG(L)), pectic galactan potato (PG(P)) xylan (birch) (X(B)), xylan (oat spelt) (X(H)), xyloglucan (XG) negative control (-), hydrolysate (+), standards: xylose, arabinose, glucose, galactose (1), xylose, xyloteiraose, xylopentatose (2), glucose, cellobiose, cellotriose, cellotetraose, cellopentose (3), galactose (4).

Figure S4 Relative activity of characterised enzymes at different pH. pH profiles of a) xylanases Xyn11A & Xyn10B-D, b) Axh43A and α -arabinofuranosidases Arf51B & Arf43C, c) β -galactosidases Bga3B & Bga35A, d) Bxl3B, Cel9Z, Man26A, and Abn43A. Experiments were performed for 30 min, 60 min (Bga2B, Bga35A and Arf51B) or 120 min (Bxl3B) at 60 °C in 0.1 M citrate-phosphate reaction buffer with 0.05 mg/L Xyn11A, 0.1 mg/L Xyn10B, 0.5 mg/L Xyn10C & Cel9Z, 0.6 mg/L Man26A, 1.0 mg/L Abn43A, 1.5 mg/L Axh43A, 5.0 mg/L Xyn10D & Arf43C, 8.0 mg/L Bga2B, 10.0 mg/L Arf51B & Bga35A and 24.0 mg/L Bxl3B.

Figure S5 Relative activity of characterised enzymes at different temperatures. Temperature profiles of a) xylanases Xyn11A & Xyn10B-D, b) Axh43A and α -arabinofuranosidases Arf51B & Arf43C, c) β -galactosidases Bga2B & Bga35A, d) Bxl3B, Cel9Z, Man26A, and Abn43A. Experiments were performed for 30 min, 60 min (Bga2B, Bga35A and Arf51B) or 120 min (Bxl3B) at the optimal pH of each enzyme in in 0.1 M citrate-phosphate reaction buffer with 0.05 mg/L Xyn11A, 0.1 mg/L Xyn10B, 0.5 mg/L Xyn10C & Cel9Z, 0.6 mg/L Man26A, 1.0 mg/L Abn43A, 1.5 mg/L Axh43A, 5.0 mg/L Xyn10D & Arf43C, 8.0 mg/L Bga2B, 10.0 mg/L Arf51B & Bga35A and 24.0 mg/L Bxl3B.

References:

- 38. Architecture et Fonction des Macromolécules Biologiques: Carbohydrate-Active Enzymes database. http://www.cazy.org/ (2014). Accessed 24 Jul 2014.
- 58. European Bioinformatics Institute: Pfam database. https://pfam.xfam.org/ (2017). Accessed 24 Jul 2017.