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SUPPLEMENTARY METHODS 

 

ChromTime model optimization 

 

Derivation of objective function 

 

As stated in the Methods, the total set of parameters of the model consists of: 

1) Prior probabilities of each dynamic d at each time point t: 𝜋𝑡,𝑑 . 

2) Parameters of the negative binomial distributions that model the PEAK and the BACKGROUND 

components at each time point: 𝛼𝑡 ,  𝛽𝑡 ,  𝛾𝑡  and 𝛿𝑡. 

3) Parameters of the negative binomial distributions that model the boundary movements in 

EXPAND and CONTRACT dynamics at each time point: 𝜇EXPAND,t, 𝛿EXPAND,t and 

𝜇CONTRACT,t, 𝛿CONTRACT,t, respectively. 

 

The optimal values of the model parameters are attempted to be estimated by Expectation Maximization 

(EM). In particular, ChromTime attempts to optimize the expectation of the complete log-likelihood 

function conditioned on the covariates of all blocks: 

 

𝑄(𝜃|𝑿 = 𝒙, �̃�) =  𝐸𝑯|𝑶,𝒁,𝑿;�̃� [∑ log𝑃(𝑶𝑖 = 𝒐𝑖 ,𝑯𝑖 , 𝒁𝑖 = 𝟏|𝑿𝑖 = 𝒙𝑖 ; �̃�)

𝑀

𝑖=1

]

=∑𝐸𝑯𝒊|𝑶𝒊,𝒁𝒊,𝑿𝒊;�̃�[log𝑃(𝑶𝑖 = 𝒐𝑖 ,𝑯𝑖 , 𝒁𝑖 = 𝟏|𝑿𝑖 = 𝒙𝑖 ; �̃�)]

𝑀

𝑖=1

 

 

where 𝜃 is the set of all model parameters that are attempted to be optimized, �̃� is the set of the EM 

algorithm’s current values for 𝜃, the index 𝑖 iterates over all 𝑀 blocks in the dataset. 𝑯𝑖  is the set of all 

latent variables in the model (Additional file 1: Fig S1C) which includes all 𝐵𝑖,𝐿,𝑡 , 𝐷𝑖,𝐿,𝑡, 𝐵𝑖,𝑅,𝑡 , 𝐷𝑖,𝑅,𝑡  and 𝑉𝑖,𝑡,𝑝 

variables. 𝒁𝑖 is the set of all 𝑍𝑖,𝑡 variables in block 𝑖 which enforce that the peak boundaries are within the 

range of the block and that the left end boundaries, 𝐵𝑖,𝐿,𝑡 are placed before right end boundaries, 𝐵𝑖,𝑅,𝑡. 𝑶𝑖 
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and 𝑿𝑖 are the sets of the variables that model the observed read counts and their covariates, 

respectively, at all bins and time points in block 𝑖. 𝒐𝑖 and 𝒙𝑖 are the corresponding values of the observed 

read counts and their covariates, respectively. The above expectation is taken with respect to all latent 

variables, conditioned on the values of all observed variables and the current values of �̃�.  

 

Let 𝐖𝑖 and 𝐰𝑖 denote the set of all observed variables in the model for block 𝑖, which include 𝑶𝑖, 𝑿𝑖 and 

𝒁𝑖, and their values, respectively. Then, 

 

𝐸𝑯𝑖|𝑶𝑖,𝒁𝑖,𝑿𝑖;�̃�[log𝑃(𝑶𝑖 = 𝒐𝑖 ,𝑯𝑖 , 𝒁𝑖 = 𝟏|𝑿𝑖 = 𝒙𝑖 ; �̃�)] 

= 𝐸𝑯𝑖|𝑾𝑖;�̃�
[log𝑃(𝑶𝑖 = 𝒐𝑖 ,𝑯𝑖 , 𝒁𝑖 = 𝟏|𝑿𝑖 = 𝒙𝑖 ; �̃�)] 

= ∑  

𝑁𝑖+1

𝑙1=1

∑  𝑃(𝐵𝑖,𝐿,1 = 𝑙1, 𝐵𝑖,𝑅,1 = 𝑟1|𝐖𝑖 = 𝐰𝑖 ; �̃�)

𝑁𝑖

𝑟1=𝑙1−1

× ( ∑ log 𝑃(𝑂𝑖,1,𝑝 = 𝑜𝑖,1,𝑝|𝑉𝑖,1,𝑝 = BACKGROUND,𝑋𝑖,1,𝑝 = 𝑥𝑖,1,𝑝)

𝑙1−1

𝑝=1

+ ∑ log 𝑃(𝑂𝑖,1,𝑝 = 𝑜𝑖,1,𝑝|𝑉𝑖,1,𝑝 = PEAK,𝑋𝑖,1,𝑝 = 𝑥𝑖,1,𝑝)

𝑟1

𝑝=𝑙1

+ ∑ log𝑃(𝑂𝑖,1,𝑝 = 𝑜𝑖,1,𝑝|𝑉𝑖,1,𝑝 = BACKGROUND, 𝑋𝑖,1,𝑝 = 𝑥𝑖,1,𝑝) + log 𝑃(𝐵𝑖,𝐿,1 = 𝑙1)

𝑁𝑖

𝑝=𝑟1+1

+ log𝑃(𝐵𝑖,𝑅,1 = 𝑟1) ) 

   +∑ ∑ ∑  

𝑑𝑅∈𝔻𝑑𝐿∈𝔻

 

𝑇

𝑡=2

∑  

𝑁𝑖+1

𝑙𝑡=1

∑ ∑  

𝑁𝑖+1

𝑙𝑡−1=1

∑  

𝑁𝑖

𝑟𝑡−1=𝑙𝑡−1−1

 

𝑁𝑖

𝑟𝑡=𝑙𝑡−1

 

      P(𝐵𝑖,𝐿,𝑡 = 𝑙𝑡 , 𝐵𝑖,𝐿,𝑡−1 = 𝑙𝑡−1, 𝐷𝑖,𝐿,𝑡−1 = 𝑑𝐿 , 𝐵𝑖,𝑅,𝑡 = 𝑟𝑡 , 𝐵𝑖,𝑅,𝑡−1 = 𝑟𝑡−1, 𝐷𝑖,𝑅,𝑡−1 = 𝑑𝑅|𝐖𝑖 = 𝐰𝑖 ; �̃�) 
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                     × ((log𝑃(𝐵𝑖,𝐿,𝑡 = 𝑙𝑡|𝐵𝑖,𝐿,𝑡−1 = 𝑙𝑡−1, 𝐷𝑖,𝐿,𝑡−1 = 𝑑𝐿) + log 𝑃(𝐵𝑖,𝑅,𝑡 = 𝑟𝑡|𝐵𝑖,𝑅,𝑡−1 = 𝑟𝑡−1, 𝐷𝑖,𝑅,𝑡−1 = 𝑑𝑅)

+ log 𝑃(𝐷𝑖,𝐿,𝑡−1 = 𝑑𝐿) + log 𝑃(𝐷𝑖,𝑅,𝑡−1 = 𝑑𝑅)

+∑ log 𝑃(𝑂𝑖,𝑡,𝑝 = 𝑜𝑖,𝑡,𝑝|𝑉𝑖,𝑡,𝑝 = BACKGROUND, 𝑋𝑖,𝑡,𝑝 = 𝑥𝑖,𝑡,𝑝)

𝑙𝑡−1

𝑝=1

+∑ log𝑃(𝑂𝑖,𝑡,𝑝 = 𝑜𝑖,𝑡,𝑝|𝑉𝑖,𝑡,𝑝 = PEAK, 𝑋𝑖,𝑡,𝑝 = 𝑥𝑖,𝑡,𝑝)

𝑟𝑡

𝑝=𝑙𝑡

+ ∑ log𝑃(𝑂𝑖,𝑡,𝑝 = 𝑜𝑖,𝑡,𝑝|𝑉𝑖,𝑡,𝑝 = BACKGROUND, 𝑋𝑖,𝑡,𝑝 = 𝑥𝑖,𝑡,𝑝)

𝑁𝑖

𝑝=𝑟𝑡+1

)) 

where 𝑇 denotes the number of time points in the time course, 𝑜𝑖,𝑡,𝑝 and 𝑥𝑖,𝑡,𝑝 denote the number of 

observed foreground reads and covariates, respectively, in block 𝑖 at time point 𝑡 at position 𝑝, 𝑁𝑖 denotes 

the number of bins in block 𝑖 and 𝔻 denotes the set of all dynamics (𝔻 = {STEADY, EXPAND, CONTRACT}). 

 

The expectation of the complete log likelihood, 𝑄(𝜃|𝑿 = 𝒙, �̃�), simplifies substantially, if we substitute in 

the above equation each of the following terms:  

 

∑  

𝑁𝑖+1

𝑙1=1

∑  𝑃(𝐵𝑖,𝐿,1 = 𝑙1, 𝐵𝑖,𝑅,1 = 𝑟1|𝐖𝑖 = 𝐰𝑖 ; �̃�)

𝑁𝑖

𝑟1=𝑙1−1

× ( ∑ log 𝑃(𝑂𝑖,1,𝑝 = 𝑜𝑖,1,𝑝|𝑉𝑖,1,𝑝 = BACKGROUND,𝑋𝑖,1,𝑝 = 𝑥𝑖,1,𝑝)

𝑙1−1

𝑝=1

+ ∑ log 𝑃(𝑂𝑖,1,𝑝 = 𝑜𝑖,1,𝑝|𝑉𝑖,1,𝑝 = PEAK,𝑋𝑖,1,𝑝 = 𝑥𝑖,1,𝑝)

𝑟1

𝑝=𝑙1

+ ∑ log𝑃(𝑂𝑖,1,𝑝 = 𝑜𝑖,1,𝑝|𝑉𝑖,1,𝑝 = BACKGROUND, 𝑋𝑖,1,𝑝 = 𝑥𝑖,1,𝑝)

𝑁𝑖

𝑝=𝑟1+1

) 

=∑log 𝑃(𝑂𝑖,1,𝑝 = 𝑜𝑖,1,𝑝|𝑉𝑖,1,𝑝 = PEAK,𝑋𝑖,1,𝑝 = 𝑥𝑖,1,𝑝) 

𝑁𝑖

𝑝=1

∑  

𝑝

𝑙1=1

∑  𝑃(𝐵𝑖,𝐿,1 = 𝑙1, 𝐵𝑖,𝑅,1 = 𝑟1|𝐖𝑖 = 𝐰𝑖 ; �̃�)

𝑁𝑖

𝑟1=𝑝
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+ ∑ log𝑃(𝑂𝑖,1,𝑝 = 𝑜𝑖,1,𝑝|𝑉𝑖,1,𝑝 = BACKGROUND, 𝑋𝑖,1,𝑝 = 𝑥𝑖,1,𝑝)

𝑁𝑖

𝑝=1

 

× (∑  

𝑝−1

𝑙1=1

∑  𝑃(𝐵𝑖,𝐿,1 = 𝑙1, 𝐵𝑖,𝑅,1 = 𝑟1|𝐖𝑖 = 𝐰𝑖 ; �̃�) + ∑  

𝑁𝑖+1

𝑙1=𝑝+1

∑  𝑃(𝐵𝑖,𝐿,1 = 𝑙1, 𝐵𝑖,𝑅,1 = 𝑟1|𝐖𝑖 = 𝐰𝑖 ; �̃�)

𝑁𝑖

𝑟1=𝑙1−1

𝑝−1

𝑟1=𝑙1−1

) 

=∑ 

𝑁𝑖

𝑝=1

(𝑃(𝑉𝑖,1,𝑝 = PEAK|𝐖𝑖 = 𝐰𝑖 ; �̃�) log 𝑃(𝑂𝑖,1,𝑝 = 𝑜𝑖,1,𝑝|𝑉𝑖,1,𝑝 = PEAK,𝑋𝑖,1,𝑝 = 𝑥𝑖,1,𝑝)  

+ (1 − 𝑃(𝑉𝑖,1,𝑝 = PEAK|𝐖𝑖 = 𝐰𝑖 ; �̃�)) log𝑃(𝑂𝑖,1,𝑝 = 𝑜𝑖,1,𝑝|𝑉𝑖,1,𝑝 = BACKGROUND, 𝑋𝑖,1,𝑝 = 𝑥𝑖,1,𝑝)) 

=∑ 

𝑁𝑖

𝑝=1

(𝑃(𝑉𝑖,1,𝑝 = PEAK|𝐖𝑖 = 𝐰𝑖 ; �̃�) log (NB(𝑜𝑖,1,𝑝; 𝜇PEAK,1 = exp[𝛼1 + 𝛾1 log 𝜆𝑖,1,𝑝], 𝛿1)) 

+ 𝑃(𝑉𝑖,1,𝑝 = BACKGROUND|𝐖𝑖 = 𝐰𝑖 ; �̃�) log (NB(𝑜𝑖,1,𝑝; 𝜇BACKGROUND,1 = exp[𝛽1 + 𝛾1 log 𝜆𝑖,1,𝑝], 𝛿1))) 

 

and 

 

∑ ∑ ∑  

𝑑𝑅∈𝔻𝑑𝐿∈𝔻

 

𝑇

𝑡=2

∑  

𝑁𝑖+1

𝑙𝑡=1

∑ ∑  

𝑁𝑖+1

𝑙𝑡−1=1

∑  

𝑁𝑖

𝑟𝑡−1=𝑙𝑡−1−1

 

𝑁𝑖

𝑟𝑡=𝑙𝑡−1

 

                    P(𝐵𝑖,𝐿,𝑡 = 𝑙𝑡 , 𝐵𝑖,𝐿,𝑡−1 = 𝑙𝑡−1, 𝐷𝑖,𝐿,𝑡−1 = 𝑑𝐿 , 𝐵𝑖,𝑅,𝑡 = 𝑟𝑡 , 𝐵𝑖,𝑅,𝑡−1 = 𝑟𝑡−1, 𝐷𝑖,𝑅,𝑡−1 = 𝑑𝑅|𝐖𝑖 = 𝐰𝑖 ; �̃�) 

                    × (log 𝑃(𝐵𝑖,𝐿,𝑡 = 𝑙𝑡|𝐵𝑖,𝐿,𝑡−1 = 𝑙𝑡−1, 𝐷𝑖,𝐿,𝑡−1 = 𝑑𝐿) + log 𝑃(𝐵𝑖,𝑅,𝑡 = 𝑟𝑡|𝐵𝑖,𝑅,𝑡−1 = 𝑟𝑡−1, 𝐷𝑖,𝑅,𝑡−1 = 𝑑𝑅)) 

=∑ ∑  

𝑑𝐿∈𝔻

 

𝑇

𝑡=2

∑  

𝑁𝑖+1

𝑙𝑡−1=1

∑ P(𝐵𝑖,𝐿,𝑡 = 𝑙𝑡 , 𝐵𝑖,𝐿,𝑡−1 = 𝑙𝑡−1, 𝐷𝑖,𝐿,𝑡−1 = 𝑑𝐿|𝐖𝑖 = 𝐰𝑖 ; �̃�)

𝑁𝑖+1

𝑙𝑡=1

× log 𝑃(𝐵𝑖,𝐿,𝑡 = 𝑙𝑡|𝐵𝑖,𝐿,𝑡−1 = 𝑙𝑡−1, 𝐷𝑖,𝐿,𝑡−1 = 𝑑𝐿)

+∑ ∑  

𝑑𝑅∈𝔻

 

𝑇

𝑡=2

∑  

𝑁𝑖

𝑟𝑡−1=0

∑P(𝐵𝑖,𝑅,𝑡 = 𝑟𝑡 , 𝐵𝑖,𝑅,𝑡−1 = 𝑟𝑡−1, 𝐷𝑖,𝑅,𝑡−1 = 𝑑𝑅|𝐖𝑖 = 𝐰𝑖 ; �̃�)

𝑁𝑖

𝑟𝑡=0

× log 𝑃(𝐵𝑖,𝑅,𝑡 = 𝑟𝑡|𝐵𝑖,𝑅,𝑡−1 = 𝑟𝑡−1, 𝐷𝑖,𝑅,𝑡−1 = 𝑑𝑅) 

=∑ ∑  

𝑠∈{𝐿,𝑅}

𝑇−1

𝑡=1

∑  

𝑑∈{
EXPAND,
CONTRACT

}

∑ 

𝑁𝑖

𝑗=1

𝑃(𝐽𝑖,𝑠,𝑡 = (−1)
ℊ(𝑑)𝑗, 𝐷𝑖,𝑠,𝑡 = 𝑑|𝐖𝑖 = 𝐰𝑖 ; �̃�)

× log (𝑃(𝐽𝑖,𝑠,𝑡 = (−1)
ℊ(𝑑)𝑗|𝐷𝑖,𝑠,𝑡 = 𝑑)) 
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=∑ ∑  

𝑠∈{𝐿,𝑅}

𝑇−1

𝑡=1

∑  

𝑑∈{
EXPAND,
CONTRACT

}

∑ 

𝑁𝑖

𝑗=1

𝑃(𝐽𝑖,𝑠,𝑡 = (−1)
ℊ(𝑑)𝑗, 𝐷𝑖,𝑠,𝑡 = 𝑑|𝐖𝑖 = 𝐰𝑖 ; �̃�) log(NB(𝑗 − 1; 𝜇𝑑 , 𝛿𝑑)) 

 

where 

ℊ(𝑑) = {
1 if 𝑑 = CONTRACT 
0 otherwise

 

 

In the above we used the simplification that summing over all possible ways to place the peak boundaries 

on the left and on the right side at two consecutive time points is equivalent to summing over all possible 

distances between two left boundaries and all possible distances between two right boundaries, j.  

 

Also, we can simplify: 

 

∑ ∑ ∑  

𝑑𝑅∈𝔻𝑑𝐿∈𝔻

 

𝑇

𝑡=2

∑  

𝑁𝑖+1

𝑙𝑡=1

∑ ∑  

𝑁𝑖+1

𝑙𝑡−1=1

∑  

𝑁𝑖

𝑟𝑡−1=𝑙𝑡−1−1

 

𝑁𝑖

𝑟𝑡=𝑙𝑡−1

 

                    P(𝐵𝑖,𝐿,𝑡 = 𝑙𝑡 , 𝐵𝑖,𝐿,𝑡−1 = 𝑙𝑡−1, 𝐷𝑖,𝐿,𝑡−1 = 𝑑𝐿 , 𝐵𝑖,𝑅,𝑡 = 𝑟𝑡 , 𝐵𝑖,𝑅,𝑡−1 = 𝑟𝑡−1, 𝐷𝑖,𝑅,𝑡−1 = 𝑑𝑅|𝐖𝑖 = 𝐰𝑖 ; �̃�) 

                    × (log 𝑃(𝐷𝑖,𝐿,𝑡−1 = 𝑑𝐿) + log 𝑃(𝐷𝑖,𝑅,𝑡−1 = 𝑑𝑅)) 

=∑ ∑ ∑  

𝑑∈{
STEADY,
EXPAND,
CONTRACT

}

𝑃(𝐷𝑖,𝑠,𝑡 = 𝑑|𝐖𝑖 = 𝐰𝑖 ; �̃�) log (𝑃(𝐷𝑖,𝑠,𝑡 = 𝑑))

𝑠∈{𝐿,𝑅}

  

𝑇−1

𝑡=1

 

=∑ ∑ ∑  

𝑑∈{
STEADY,
EXPAND,
CONTRACT

}

𝑃(𝐷𝑖,𝑠,𝑡 = 𝑑|𝐖𝑖 = 𝐰𝑖 ; �̃�) log(𝜋𝑡,𝑑)

𝑠∈{𝐿,𝑅}

  

𝑇−1

𝑡=1

 

 

and 

 

∑ ∑ ∑  

𝑑𝑅∈𝔻𝑑𝐿∈𝔻

 

𝑇

𝑡=2

∑  

𝑁𝑖+1

𝑙𝑡=1

∑ ∑  

𝑁𝑖+1

𝑙𝑡−1=1

∑  

𝑁𝑖

𝑟𝑡−1=𝑙𝑡−1−1

 

𝑁𝑖

𝑟𝑡=𝑙𝑡−1

 

                    P(𝐵𝑖,𝐿,𝑡 = 𝑙𝑡 , 𝐵𝑖,𝐿,𝑡−1 = 𝑙𝑡−1, 𝐷𝑖,𝐿,𝑡−1 = 𝑑𝐿 , 𝐵𝑖,𝑅,𝑡 = 𝑟𝑡 , 𝐵𝑖,𝑅,𝑡−1 = 𝑟𝑡−1, 𝐷𝑖,𝑅,𝑡−1 = 𝑑𝑅|𝐖𝑖 = 𝐰𝑖 ; �̃�) 
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                    × (∑ log𝑃(𝑂𝑖,𝑡,𝑝 = 𝑜𝑖,𝑡,𝑝|𝑉𝑖,𝑡,𝑝 = BACKGROUND, 𝑋𝑖,𝑡,𝑝 = 𝑥𝑖,𝑡,𝑝)

𝑙𝑡−1

𝑝=1

+ ∑ log 𝑃(𝑂𝑖,𝑡,𝑝 = 𝑜𝑖,𝑡,𝑝|𝑉𝑖,𝑡,𝑝 = PEAK, 𝑋𝑖,𝑡,𝑝 = 𝑥𝑖,𝑡,𝑝)

𝑟𝑡

𝑝=𝑙𝑡

+ ∑ log𝑃(𝑂𝑖,𝑡,𝑝 = 𝑜𝑖,𝑡,𝑝|𝑉𝑖,𝑡,𝑝 = BACKGROUND, 𝑋𝑖,𝑡,𝑝 = 𝑥𝑖,𝑡,𝑝)

𝑁𝑖

𝑝=𝑟𝑡+1

) 

=∑ 

𝑇

𝑡=2

∑ 

𝑁𝑖

𝑝=1

(𝑃(𝑉𝑖,𝑡,𝑝 = PEAK|𝐖𝑖 = 𝐰𝑖 ; �̃�) log𝑃(𝑂𝑖,𝑡,𝑝 = 𝑜𝑖,𝑡,𝑝|𝑉𝑖,𝑡,𝑝 = PEAK,𝑋𝑖,𝑡,𝑝 = 𝑥𝑖,𝑡,𝑝)

+ 𝑃(𝑉𝑖,𝑡,𝑝 = BACKGROUND|𝐖𝑖 = 𝐰𝑖 ; �̃�) log𝑃(𝑂𝑖,𝑡,𝑝 = 𝑜𝑖,𝑡,𝑝|𝑉𝑖,𝑡,𝑝 = BACKGROUND, 𝑋𝑖,𝑡,𝑝 = 𝑥𝑖,𝑡,𝑝)) 

=∑ 

𝑇

𝑡=1

∑ 

𝑁𝑖

𝑝=1

(𝑃(𝑉𝑖,𝑡,𝑝 = PEAK|𝐖𝑖 = 𝐰𝑖 ; �̃�) log (NB(𝑜𝑖,𝑡,𝑝; 𝜇PEAK,𝑡 = exp[𝛼𝑡 + 𝛾𝑡 log 𝜆𝑖,𝑡,𝑝], 𝛿𝑡))

+ 𝑃(𝑉𝑖,𝑡,𝑝 = BACKGROUND|𝐖𝑖 = 𝐰𝑖 ; �̃�) log (NB(𝑜𝑖,𝑡,𝑝; 𝜇BACKGROUND,𝑡 = exp[𝛽𝑡 + 𝛾𝑡 log 𝜆𝑖,𝑡,𝑝], 𝛿𝑡))) 

 

With these substitutions, we can rewrite the expectation of the conditional complete log likelihood of the 

data, 𝑄(𝜃|𝑿 = 𝒙, �̃�), as  

 

∑ ∑  

𝑁𝑖+1

𝑙1=1

∑  

𝑁𝑖

𝑟1=𝑙1−1

 

𝑀

𝑖=1

𝑃(𝐵𝑖,𝐿,1 = 𝑙1, 𝐵𝑖,𝑅,1 = 𝑟1|𝐖𝑖 = 𝐰𝑖 ; �̃�)(log𝑃(𝐵𝑖,𝐿,1 = 𝑙1) + log 𝑃(𝐵𝑖,𝑅,1 = 𝑟1)) 

+∑ 

𝑀

𝑖=1

∑ 

𝑇

𝑡=1

∑ 

𝑁𝑖

𝑝=1

(𝑃(𝑉𝑖,𝑡,𝑝 = PEAK|𝐖𝑖 = 𝐰𝑖 ; �̃�) log (NB(𝑜𝑖,𝑡,𝑝; 𝜇PEAK,𝑡 = exp[𝛼𝑡 + 𝛾𝑡 log 𝜆𝑖,𝑡,𝑝], 𝛿𝑡))

+  𝑃(𝑉𝑖,𝑡,𝑝 = BACKGROUND|𝐖𝑖 = 𝐰𝑖 ; �̃�) log (NB(𝑜𝑖,𝑡,𝑝; 𝜇BACKGROUND,𝑡 = exp[𝛽𝑡 + 𝛾𝑡 log 𝜆𝑖,𝑡,𝑝], 𝛿𝑡))) 

 

+ ∑  

𝑀

𝑖=1

∑ ∑  

𝑠∈{𝐿,𝑅}

𝑇−1

𝑡=1

∑  

𝑑∈{
EXPAND,
CONTRACT

}

∑ 

𝑁𝑖

𝑗=1

𝑃(𝐽𝑖,𝑠,𝑡 = (−1)
ℊ(𝑑)𝑗, 𝐷𝑖,𝑠,𝑡 = 𝑑|𝐖𝑖 = 𝐰𝑖 ; �̃�) × log(NB(𝑗 − 1; 𝜇𝑑 , 𝛿𝑑)) 

+ ∑  

𝑀

𝑖=1

∑ ∑ ∑  

𝑑∈{
STEADY,
EXPAND,
CONTRACT

}

𝑃(𝐷𝑖,𝑠,𝑡 = 𝑑|𝐖𝑖 = 𝐰𝑖 ; �̃�) log(𝜋𝑡,𝑑)

𝑠∈{𝐿,𝑅}

  

𝑇−1

𝑡=1

 



7 
 

 

Parameter initialization 

 

The values of the model parameters before the first EM iteration are initialized as follows:  

1) All dynamics priors, 𝜋𝑡,𝑑, are set uniformly to 
1

3
; 

2) All parameters for the distributions modelling the PEAK and BACKGROUND components, 

𝛼𝑡 ,  𝛽𝑡 ,  𝛾𝑡  and 𝛿𝑡, are set to 1; 

3) All dispersion and mean parameters for the distributions modelling the boundary movements in 

EXPAND and CONTRACT dynamics, 𝜇EXPAND,t, 𝛿EXPAND,t, 𝜇CONTRACT,t, and 𝛿CONTRACT,t, are set to 1. 

 

At each time point, ChromTime requires that the position of the left boundary of each peak is placed 

before the position of the right boundary (i.e. 𝐵𝑖,𝐿,𝑡 ≤ 𝐵𝑖,𝑅,𝑡 + 1), and that 1 ≤ 𝐵𝑖,𝐿,𝑡 ≤ 𝑁𝑖  + 1 and 0 ≤

 𝐵𝑖,𝑅,𝑡 ≤ 𝑁𝑖. For each block 𝑖, this requirement is implemented by introducing additional 𝑍𝑖,𝑡 variables in 

the model, which are treated as observed, and setting: 

 

𝑃(𝑍𝑖,𝑡 = 1|𝐵𝑖,𝐿,𝑡 = 𝑙, 𝐵𝑖,𝑅,𝑡 = 𝑟) = { 
1   if 1 ≤ 𝑙 ≤ 𝑟 + 1 ≤ 𝑁 + 1
0   otherwise

 

 

This requirement in combination with the uniform priors over the left and the right peak boundary 

positions at the first time point, 𝐵𝑖,𝐿,1 and 𝐵𝑖,𝑅,1, induces non-uniform conditional probabilities 𝑃(𝑉𝑖,𝑡,𝑝 =

PEAK|𝑍𝑖,𝑡 = 1) for the 𝑉𝑖,𝑡,𝑝 variables, which model the probability that a bin at position 𝑝 and time point 𝑡 

is assigned to the peak component. As a result, bins in the middle of the block are more likely to be in the 

peak component compared to flanking bins on each side. For example in block 𝑖 of length 𝑁𝑖 in a dataset 

with only one time point, the conditional probability for a bin at position 𝑝 (1 ≤ 𝑝 ≤ 𝑁𝑖) to be in a peak after 

marginalizing out all other latent variables and the observed read counts in the model can be expressed 

as a function of 𝑝: 

 



8 
 

𝑃(𝑉𝑖,1,𝑝 = PEAK|𝑍𝑖,1 = 1)

=∑∑𝑃(𝐵𝑖,𝐿,1 = 𝑙,𝐵𝑖,𝑅,1 = 𝑟|𝑍𝑖,1 = 1)

𝑁𝑖

𝑟=𝑝

𝑝

𝑙=1

=∑∑
𝑃(𝑍𝑖,1 = 1|𝐵𝑖,𝐿,1 = 𝑙,𝐵𝑖,𝑅,1 = 𝑟)𝑃(𝐵𝑖,𝐿,1 = 𝑙,𝐵𝑖,𝑅,1 = 𝑟)

𝑃(𝑍𝑖,1 = 1)

𝑁𝑖

𝑟=𝑝

𝑝

𝑙=1

=∑∑
𝑃(𝑍𝑖,1 = 1|𝐵𝑖,𝐿,1 = 𝑙,𝐵𝑖,𝑅,1 = 𝑟)𝑃(𝐵𝑖,𝐿,1 = 𝑙)𝑃(𝐵𝑖,𝑅,1 = 𝑟)

∑ ∑ 𝑃(𝑍𝑖,1 = 1|𝐵𝑖,𝐿,1 = 𝑙′,𝐵𝑖,𝑅,1 = 𝑟′)𝑃(𝐵𝑖,𝐿,1 = 𝑙′)𝑃(𝐵𝑖,𝑅,1 = 𝑟′)
𝑁𝑖
𝑟′=0

𝑁𝑖+1

𝑙′=1

𝑁𝑖

𝑟=𝑝

𝑝

𝑙=1

 

= ∑∑
1

∑ ∑ 1
𝑁𝑖
𝑟′=𝑙′−1

𝑁𝑖+1

𝑙′=1

𝑁𝑖

𝑟=𝑝

𝑝

𝑙=1

=  
2𝑝(𝑁𝑖 − 𝑝 + 1)

(𝑁𝑖 + 1)(𝑁𝑖 + 2)
 

 

The above equalities follow from 𝑃(𝐵𝑖,𝐿,1 = 𝑙′) = 𝑃(𝐵𝑖,𝑅,1 = 𝑟′) =
1

𝑁𝑖+1
 for all 𝑙′ ∈ [1, 𝑁𝑖 + 1], 𝑟′ ∈ [0, 𝑁𝑖] and 

𝑃(𝑍𝑖,1 = 1|𝐵𝑖,𝐿,1 = 𝑙′, 𝐵𝑖,𝑅,1 = 𝑟′) = 1 for 𝑙′ ≤ 𝑟′ − 1 and 𝑃(𝑍𝑖,1 = 1|𝐵𝑖,𝐿,1 = 𝑙′, 𝐵𝑖,𝑅,1 = 𝑟′) = 0, otherwise. Of 

note, 𝑃(𝑉𝑖,1,𝑝 = PEAK|𝑍𝑖,1 = 1) as a function of 𝑝 is symmetric with respect to the center of the block. For 

even 𝑁𝑖, the maximum of 𝑃(𝑉𝑖,1,𝑝 = PEAK|𝑍𝑖,1 = 1) is equal to 
𝑁𝑖

2(𝑁𝑖+1)
 and is obtained for 𝑝 =

𝑁𝑖

2
 and for 𝑝 =

𝑁𝑖

2
+ 1. For odd 𝑁𝑖, the maximum of 𝑃(𝑉𝑖,1,𝑝 = PEAK|𝑍𝑖,1 = 1) is equal to 

𝑁𝑖+1

2(𝑁𝑖+2)
 and is obtained for 𝑝 = ⌈

𝑁𝑖

2
⌉. 

In both cases the maximum is less than 
1

2
 .  

 

We note that the above function of 𝑝 is not in itself a probability distribution over 𝑝, because 𝑝 is not a 

random variable in the model and thus the sum over 𝑝 does not have to be equal to 1. We have 

empirically confirmed that in a dataset with five time points 𝑃(𝑉𝑖,𝑡,𝑝 = PEAK|𝑍𝑖,𝑡 = 1) has a similar 

relationship to the position index 𝑝, as in datasets with one time point. We did this by marginalizing out 

the observed read counts and all latent variables except 𝑉𝑖,𝑡,𝑝 from the probability distribution of all 

variables in the model conditioned on the block’s covariates (Methods, Additional file 1: Fig S1Di). The 

conditional probabilities 𝑃(𝑉𝑖,𝑡,𝑝 = PEAK|𝑍𝑖,𝑡 = 1) play a role during the learning stage of ChromTime, 

because they direct the model during the initial iterations of the EM to correctly associate the peak 

component with high signal and the background component with low signal. The assumption that high 
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signal will more likely be located in the middle of blocks is motivated by the procedure that determines the 

block boundaries in the first phase of ChromTime, which naturally produces blocks with more significantly 

enriched bins in the middle compared to their flanking regions (Additional file 1: Fig S1Dii). As a result, no 

further efforts from the initialization or the training procedures are necessary in practice to identify 

correctly each component.  

 

Expectation step 

 

ChromTime provides an efficient implementation of the expectation step of EM based on a dynamic 

programming algorithm similar to the Baum-Welch algorithm for hidden Markov models. In brief, at each 

time point there are O(N2) ways to place the start and end positions of a peak, resulting in O(N4) 

combinations between any pair of consecutive time points. Thus, a standard forward-backward procedure 

that caches intermediate results can compute all expectations in O(T*N4) time and O(T*N2) memory. 

Since O(T*N4) time complexity can result in very long running times even for moderate N, ChromTime 

splits blocks that are longer than a predefined number of bins, MAX_BINS, (30 by default) into two halves 

(left and right) and estimates all sufficient statistics in each half independently. If block 𝑖 is longer than 

MAX_BINS, the split is performed at the position with the highest average signal across all time points in 

the block, 𝐾𝑖. This splitting procedure corresponds to imposing an additional constraint on the values of 

the boundary position variables that 𝐵𝑖,𝐿,𝑡 ≤  𝐾𝑖 and 𝐵𝑖,𝑅,𝑡 ≥  𝐾𝑖 − 1 at each time point, 𝑡, while still having 

all bins between the left and the right boundaries annotated as peak bins (i.e. 𝑉𝑖,𝑡,𝑝 = PEAK  for all 𝑝 such 

that 𝐵𝑖,𝐿,𝑡 ≤ 𝑝 ≤ 𝐵𝑖,𝑅,𝑡 and 𝑉𝑖,𝑡,𝑝 = BACKGROUND for all other values of 𝑝). This heuristic reduces the time 

complexity to O(T*N2) and the memory footprint to O(T*N), thus making the whole EM procedure run in 

feasible time and space. Since the O(T*N4) algorithm is applied only to blocks shorter than MAX_BINS 

bins, the total running time of ChromTime in a dataset of M blocks remains at most quadratic in the length 

of longer peaks in the data, O(M*T*N2). 

 

For computational efficiency, if there are more than 10,000 blocks, ChromTime randomly selects 10,000 

as input for the EM procedure.  
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Maximization step 

 

The form of the complete log-likelihood implies that each set of model parameters can be optimized 

independently by solving for the roots of the respective partial derivatives. The dynamics prior 

probabilities are updated after each EM iteration as: 

 

𝑃(𝐷𝑖,𝐿,𝑡 = 𝑑) = 𝑃(𝐷𝑖,𝑅,𝑡 = 𝑑) =
1

2𝑀
∑ ∑  

𝑠∈{𝐿,𝑅}

𝑃(𝐷𝑖,𝑠,𝑡 = 𝑑|𝐖𝑖 = 𝐰𝑖 ; �̃�)

𝑀

𝑖=1

 

 

Users have the option to set a minimum prior probability (MIN_PRIOR) for the dynamics at each time 

point. This parameter can be used to avoid learning priors too close to zero, which in some cases can 

occur for more punctate marks where the short length of the peaks can cause the prior to become a 

dominant influence on the class assignment of the spatial dynamics. By default, MIN_PRIOR=0 in narrow 

and broad modes and MIN_PRIOR=0.05 in punctate mode. Priors whose updates from the above 

equation are less than MIN_PRIOR are set to MIN_PRIOR, and the priors for the rest of the dynamics at 

the same pair of time points are rescaled proportionally to reflect this change. If rescaling causes other 

priors to be set below MIN_PRIOR, then these priors are also set to MIN_PRIOR and rescaling is 

repeated until all priors are at least equal to MIN_PRIOR. 

 

Optimizing the peak and background signal components 

 

The part of the expectation of the complete log likelihood that pertains to the peak and background signal 

components is: 

 

∑  

𝑀

𝑖=1

∑  

𝑇

𝑡=1

∑  

𝑁𝑖

𝑝=1

𝑃(𝑉𝑖,𝑡,𝑝 = PEAK|𝐖𝑖 = 𝐰𝑖 ; �̃�) log (NB(𝑜𝑖,𝑡,𝑝; 𝜇PEAK,𝑡 = exp[𝛼𝑡 + 𝛾𝑡 log 𝜆𝑖,𝑡,𝑝], 𝛿𝑡)) +  
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+∑  

𝑀

𝑖=1

∑  

𝑇

𝑡=1

∑  

𝑁𝑖

𝑝=1

𝑃(𝑉𝑖,𝑡,𝑝 = BACKGROUND|𝐖𝑖 = 𝐰𝑖 ; �̃�)

× log (NB(𝑜𝑖,𝑡,𝑝; 𝜇BACKGROUND,𝑡 = exp[𝛽𝑡 + 𝛾𝑡 log 𝜆𝑖,𝑡,𝑝], 𝛿𝑡)) 

 

These equations are equivalent to the equations for finding the maximum likelihood estimates for the 

coefficients and the dispersion parameter of one weighted negative binomial regression for each time 

point and component (peak and background) that aims to predict the observed number of foreground 

reads, 𝑜𝑖,𝑡,𝑝 (as a response), from the vector of covariates 𝑥𝑖,𝑡,𝑝 = [1, log 𝜆𝑖,𝑡,𝑝]. The coefficients in our case 

are 𝛼𝑡 and 𝛾𝑡 (for the peak component) and 𝛽𝑡 and 𝛾𝑡 (for the background component). The weights for 

each regression correspond to the posterior probabilities 𝑃(𝑉𝑖,𝑡,𝑝 = PEAK|𝐖𝑖 = 𝐰𝑖 ; �̃�) and 

𝑃(𝑉𝑖,𝑡,𝑝 = BACKGROUND|𝐖𝑖 = 𝐰𝑖 ; �̃�), respectively. In contrast to standard negative binomial regression, 

for each time point we have a pair of coupled negative binomial regressions that share the dispersion 

parameter 𝛿𝑡 and the coefficient 𝛾𝑡. ChromTime implements a procedure that jointly optimizes each pair 

of coupled regressions, which is based on a modification of the glm.nb method from the MASS 

package[1] in R. In particular, we attempt to find the roots of the partial derivative of 𝑄(𝜃|𝑿 = 𝒙, �̃�) with 

respect to the shared 𝛿𝑡 and 𝛾𝑡. Each of these derivatives however is simply the sum of the partial 

derivatives with respect to each parameter of the two components. Therefore, the standard procedure of 

fitting weighted negative binomial regressions can be reused whereby the part that finds the roots of the 

partial derivatives with respect to 𝛿𝑡 and 𝛾𝑡, had they not been shared, is replaced by a routine that finds 

the roots of the sum of the partial derivatives across both components with respect to each parameter. On 

the other hand, the parts that find the roots of the partial derivatives with respect to 𝛼𝑡 and 𝛽𝑡 are the 

same as in the standard procedure for fitting weighted negative binomial regressions. The only other 

difference between our implementation and glm.nb is that ChromTime uses the HYBRD method from the 

MINPACK package[2] for finding roots of functions instead of Iterative Reweighted Least Squares (IRLS). 

In our tests, our optimization routine and glm.nb yielded very similar results for regular un-coupled 

weighted negative binomial regressions. 

 



12 
 

Optimizing the boundary movement components 

 

The part of the expectation of the conditional complete log-likelihood that pertains to modelling the peak 

boundary movements is: 

 

∑ 

𝑀

𝑖=1

∑ ∑  

𝑠∈{𝐿,𝑅}

𝑇−1

𝑡=1

∑  

𝑑∈{
EXPAND,
CONTRACT

}

∑ 

𝑁𝑖

𝑗=1

𝑃(𝐽𝑖,𝑠,𝑡 = (−1)ℊ(𝑑)𝑗, 𝐷𝑖,𝑠,𝑡 = 𝑑|𝐖𝑖 = 𝐰𝑖 ; �̃�) log(NB(𝑗 − 1; 𝜇𝑑 , 𝛿𝑑)) 

 

Again, this equation is equivalent to the equation for finding the maximum likelihood estimates of the 

coefficients and the dispersion parameter of one weighted negative binomial regression for each dynamic 

and time point that aims to predict the number of positions the left or the right boundary moves minus 1 

(𝑗 − 1, as response) from a single covariate which is the constant term equal to 1. The weights 

correspond to the posterior probability of moving the boundary by j positions, 

𝑃(𝐽𝑖,𝑠,𝑡 = (−1)
ℊ(𝑑)𝑗, 𝐷𝑖,𝑠,𝑡 = 𝑑|𝐖𝑖 = 𝐰𝑖 ; �̃�). The procedure to find the maximum likelihood estimates is the 

same as the one used in the previous section, except that no sharing of parameters is enforced between 

any of the negative binomial regressions. 

 

Sharing dispersion parameter between negative binomial distributions 

 

Sharing the dispersion parameter 𝛿 between two negative binomial distributions ensures that the 

distribution with the smaller mean value has higher probabilities compared to the distribution with the 

larger mean value for the lowest values of the support domain of the negative binomial distribution, and 

that the opposite holds for the largest values of the support domain. Here we will prove this claim. Let 𝜇1 

and 𝜇2 be the means of two negative binomial distributions, NB1 and NB2, respectively. Without loss of 

generality, we will assume that 0 ≤ 𝜇1 < 𝜇2. Dividing the probability mass functions of the two distributions 

gives: 
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𝑁𝐵1(𝑘)

𝑁𝐵2(𝑘)
=

Γ(𝑘 + 𝛿)
𝑘! Γ(𝛿)

(
𝛿

𝜇1 + 𝛿
)
𝛿

(
𝜇1

𝜇1 + 𝛿
)
𝑘

Γ(𝑘 + 𝛿)
𝑘! Γ(𝛿)

(
𝛿

𝜇2 + 𝛿
)
𝛿

(
𝜇2

𝜇2 + 𝛿
)
𝑘
=
(

1
𝜇1 + 𝛿

)
𝛿

(
𝜇1

𝜇1 + 𝛿
)
𝑘

(
1

𝜇2 + 𝛿
)
𝛿

(
𝜇2

𝜇2 + 𝛿
)
𝑘
= (

𝜇1
𝜇2
)
𝑘

(
𝜇2 + 𝛿

𝜇1 + 𝛿
)
𝛿+𝑘

 

  

Since 𝛿 > 0, substituting with 𝑘 = 0, gives: 

 

𝑁𝐵1(0)

𝑁𝐵2(0)
= (

𝜇1
𝜇2
)
0

(
𝜇2 + 𝛿

𝜇1 + 𝛿
)
𝛿

= (
𝜇2 + 𝛿

𝜇1 + 𝛿
)
𝛿

> 1 

 

Therefore, NB1 has higher probability for 𝑘 = 0 compared to NB2.  

 

To prove that the opposite holds for the largest values of the support, we will take the limit of the above 

ratio for 𝑘 → ∞: 

 

lim
𝑘→∞

𝑁𝐵1(𝑘)

𝑁𝐵2(𝑘)
= lim

𝑘→∞
(
𝜇1
𝜇2
)
𝑘

(
𝜇2 + 𝛿

𝜇1 + 𝛿
)
𝛿+𝑘

= (
𝜇2 + 𝛿

𝜇1 + 𝛿
)
𝛿

lim
𝑘→∞

(

𝜇1
𝜇1 + 𝛿
𝜇2

𝜇2 + 𝛿

)

𝑘

= 0 

 

The last equality holds, because: 

 

𝜇1
𝜇1 + 𝛿

−
𝜇2

𝜇2 + 𝛿
=

𝛿(𝜇1 − 𝜇2)

(𝜇1 + 𝛿)(𝜇2+ 𝛿)
< 0  ⟹  

𝜇1
𝜇1 + 𝛿
𝜇2

𝜇2 + 𝛿

<  1  

 

Therefore, for sufficiently large 𝑘 NB2 has higher probability compared to NB1. 

 

We note that sharing the dispersion parameter for negative binomial mixture models is analogous to 

sharing the variance parameter in Gaussian mixture models. 
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Computing the most likely spatial dynamic and peak boundaries for each block across the whole 

time course 

 

After the optimal values for all model parameters are estimated from the data, for each block the most 

likely positions of the peak boundaries at each time point are calculated. This procedure consists of two 

steps. First, ChromTime determines for each block all time points with significantly low probability of 

containing a false positive non-zero peak. Second, conditioned on those time points, ChromTime 

computes the most likely assignment of the peak boundary variables at each side and each time point.  

 

During the first step, for each block and each time point ChromTime computes the posterior probability 

that the whole time point is modelled as background, 𝜑𝑖,𝑡 = ∏ 𝑃(𝑉𝑖,𝑡,𝑝 = BACKGROUND|𝐖𝑖 = 𝐰𝑖)
𝑁𝑖
𝑝=1 . This 

probability can be interpreted as the probability of making a false positive non-zero length peak call as 

estimated by the model at time point t in block 𝑖. To determine significant time points with low false 

positive probability, 𝜑𝑖,𝑡, ChromTime computes a time point specific threshold, 𝜏𝑡, at a predefined false 

discovery rate (0.05 by default) by applying the standard Benjamini-Hochberg procedure[3] on all values 

of 𝜑𝑖,𝑡 from time point t.  

 

In the second step, for each block ChromTime computes the most likely sequence of assignments of the 

boundary positions, conditioned on the event that all time points that failed to pass the FDR threshold in 

the previous step for the block are assigned to having no peaks. In particular, ChromTime executes a 

dynamic programming algorithm similar to the Viterbi algorithm for hidden Markov models, which uses the 

following recursive formula to find the most likely position for the peak boundaries at each side, 𝑠 (Left or 

Right) and enforces that time points that failed the FDR test contain no peaks: 
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DP𝑖,𝑡,𝑙,𝑟 =

{
 
 
 
 

 
 
 
 
 log [𝑃(𝑶𝑖,1 = 𝒐𝑖,1, 𝑍𝑖,1 = 1|𝐵𝑖,𝐿,1 = 𝑙, 𝐵𝑖,𝑅,1 = 𝑟, 𝑿𝑖,1 = 𝒙𝑖,1)𝑃(𝐵𝑖,𝐿,1 = 𝑙)𝑃(𝐵𝑖,𝑅,1 = 𝑟)] , 𝑡 = 1

max
𝑙𝑡−1∈[1,𝑁𝑖+1]

𝑟𝑡−1∈{
 [𝑙𝑡−1−1,𝑁𝑖] if 𝜑𝑖,𝑡≤𝜏𝑡 

{𝑙𝑡−1−1}  otherwise    

 

(

 
 
 
 
 

 DP𝑖,𝑡−1,𝑙𝑡−1,𝑟𝑡−1 +

 log 𝑃(𝑶𝑖,𝑡 = 𝒐𝑖,𝑡 , 𝑍𝑖,𝑡 = 1|𝐵𝑖,𝐿,𝑡 = 𝑙, 𝐵𝑖,𝑅,𝑡 = 𝑟, 𝑿𝑖,𝑡 = 𝒙𝑖,𝑡) +

 log 𝑃(𝐽𝑖,𝐿,𝑡−1 = 𝑙𝑡−1 − 𝑙|𝐷𝑖,𝐿,𝑡−1 = 𝒹(𝑙𝑡−1 − 𝑙)) +

 log 𝑃(𝐷𝑖,𝐿,𝑡−1 = 𝒹(𝑙𝑡−1 − 𝑙)) +

 log 𝑃(𝐽𝑖,𝑅,𝑡−1 = 𝑟 − 𝑟𝑡−1|𝐷𝑖,𝑅,𝑡−1 = 𝒹(𝑟 − 𝑟𝑡−1)) +

 log 𝑃(𝐷𝑖,𝑅,𝑡−1 = 𝒹(𝑟 − 𝑟𝑡−1)) )

 
 
 
 
 

, 𝑡 > 1
 

 

where 𝒹(𝑗) = {

 STEADY if  𝑗 = 0
 EXPAND if  𝑗 ≥ 1
 CONTRACT if  𝑗 ≤ −1

 

 

and DP𝑖 denotes the dynamic programing cube of size T(𝑁𝑖+1)2
 that stores the log-likelihood for the best 

assignment of the peak boundary variables up to time point t in block i. Tracing the DP𝑖 cube from the 

highest value on row T back to row 1 retrieves the best assignment of the peak end variables. Similarly to 

the expectation step of the EM phase, for blocks longer than MAX_BINS bins the best Viterbi path is 

chosen among the splits at the top MAX_BINS positions in the block sorted by their average foreground 

signal across all time points. Since MAX_BINS is a predefined constant, the whole procedure has the 

same time and space complexity as computing the expectations in the EM phase of ChromTime. The 

dynamic between any two time points is determined from the direction of the movement of the optimal 

positions of the corresponding boundaries.  

 

Transcription factor binding and DNase I hypersensitivity data 

 

In Figure 3A, TF binding data for GATA3 was used from the same study of mouse T cell development[4].  

 

In Additional file 1: Figures S4Ai and S4Aiv, OCT4 and NANOG binding data for H1-hESC was 

downloaded from the ENCODE project [5]: 

 

OCT4: https://www.encodeproject.org/files/ENCFF002CJF/@@download/ENCFF002CJF.bed.gz 

NANOG: https://www.encodeproject.org/files/ENCFF002CJA/@@download/ENCFF002CJA.bed.gz 

https://www.encodeproject.org/files/ENCFF002CJF/@@download/ENCFF002CJF.bed.gz
https://www.encodeproject.org/files/ENCFF002CJA/@@download/ENCFF002CJA.bed.gz
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In Additional file 1: Figure S4Ai, P300 binding data for H1-hESC was downloaded from the ENCODE 

project [5]: 

 

P300: 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/wgEncodeBroad

HistoneH1hescP300kat3bPk.broadPeak.gz 

 

In Additional file 1: Figure S4Ai, IMR90 peaks for P300 generated from previously published data[6] were 

downloaded at 0.05 FDR from ChIP-Atlas[7]: 

http://chip-atlas.org/view?id=SRX212184 

 

Narrow peaks for all other TFs in Additional file 1: Figures S4Ai and S4Aii were downloaded from the 

ENCODE consortium[5] from the following URL: 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/ 

 

In Additional file 1: Figures S4Ai and S4Aii, for DHSs we used DNaseI hypersensitivity peaks for H1 and 

IMR90 cells that were downloaded from the Roadmap Epigenomics Consortium[8]: 

http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/E003-

DNase.macs2.narrowPeak.gz 

http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/E017-

DNase.macs2.narrowPeak.gz 

  

In Additional file 1: Figures S4Aiii, S4Biii and S7, ATAC-seq, HM, TF binding and gene expression data 

was used from a previously published study about stem cell reprogramming in mouse[9].  

 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/wgEncodeBroadHistoneH1hescP300kat3bPk.broadPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/wgEncodeBroadHistoneH1hescP300kat3bPk.broadPeak.gz
http://chip-atlas.org/view?id=SRX212184
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/E003-DNase.macs2.narrowPeak.gz
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/E003-DNase.macs2.narrowPeak.gz
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/E017-DNase.macs2.narrowPeak.gz
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/E017-DNase.macs2.narrowPeak.gz
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In Additional file 1: Figures S4Aiv and S4Biv aligned reads for DNaseI hypersensitivity were downloaded 

for H1 human embryonic stem cells, H1-derived neuronal progenitor cells and fetal brain tissue 

(epigenome ids: E003, E007, E082) from the Roadmap Epigenomics Consortium[8]: 

http://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/E003-DNase.tagAlign.gz 

http://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/E007-DNase.tagAlign.gz 

http://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/E082-DNase.tagAlign.gz 

 

Gene expression data in Additional file 1: Figure S4Biv was downloaded from the Roadmap Epigenomics 

Consortium[8]: 

http://egg2.wustl.edu/roadmap/data/byDataType/rna/expression/57epigenomes.RPKM.pc.gz 

 

Cell type specific and shared annotations were derived after subtracting one of the annotations from the 

other with the BedTools software[10] using the “bedtools subtract –A” command and by intersecting the 

two annotations with “bedtools intersect”, respectively. 

 

Fold enrichments calculation 

 

In Figure 3A and Additional file 1: Figure S4A, three types of ChromTime blocks (T1-Tn Steady, Tx-Tn 

Expand and T1-Tx Contract) were defined to start and end from the left most to the right most boundary, 

respectively, of the non-zero length peaks across all time points within each block. “T1-Tn Steady” blocks 

have non-zero length peaks at all time points with both left and right boundaries predicted as steady 

across all time points. “Tx-Tn Expand” blocks have a non-zero length peak at the last time point, have no 

contracting peak boundaries, and have at least one expanding peak boundary from a zero or non-zero 

length peak for at least one pair of consecutive time points. “T1-Tx Contract” blocks have a non-zero 

length peak at the first time point, have no expanding peak boundaries, and have at least one contracting 

peak boundary to a zero or non-zero length peak for at least one pair of consecutive time points. 

 

http://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/E003-DNase.tagAlign.gz
http://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/E007-DNase.tagAlign.gz
http://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/E082-DNase.tagAlign.gz
http://egg2.wustl.edu/roadmap/data/byDataType/rna/expression/57epigenomes.RPKM.pc.gz
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In Additional file 1: Figure S3, ChromTime peaks annotated with each dynamic class (e.g. E/E, E/S, etc) 

at each pair of consecutive time points were defined to start and end from the left most to the right most 

coordinate, respectively, of the peaks at the corresponding pair of time points.  

 

Fold enrichments of base pair overlap in Figures 3A, 6, and Additional file 1: Figures S3, S4A, and S7 

were computed for each pair of genomic features by dividing the size of their observed overlap by the 

size of their expected overlap. For two genomic features A and B, the observed overlap was defined as 

the total number of bases in their intersection, |𝐴 ∩ 𝐵|. The expected overlap was defined based on a 

binomial null model that preserves the size of each feature and treats the two features as independently 

distributed within a certain set of eligible background genomic positions, G: 

E(𝐴, 𝐵) =  |𝐴| ∗
|𝐵|

|𝐺|
 

where |G| denotes the size of the set of all eligible positions. In Figure 3A and Additional file 1: Figure 

S4A the set of eligible background positions was defined for each time course as all genomic bases 

covered by ChromTime peaks for that time course. In Additional file 1: Figure S3, the set of eligible 

background positions at each time point was defined as all bases in the union of all predicted ChromTime 

peaks from both replicates at that time point. In Figure 6 and Additional file 1: Figure S7, the set of eligible 

background positions is defined to be all genomic bases in the corresponding genome. In addition, in 

Figure 6 and Additional file 1: Figures S3 and S7 in order to avoid extremely high enrichments due to very 

rare predicted dynamics classes a pseudo-count of 200 bp (i.e. one genomic bin) was added to each 

overlap. In Additional file 1: Figure S3, the fold enrichments for each pair of consecutive time points were 

log2-transformed and the average of the log-transformed values across all time point pairs is shown. In 

Figure 6 and Additional file 1: Figure S7, geometric means were taken across enrichments at each pair of 

consecutive time points and the resulted average enrichments were capped at a maximum value of 50. 

Clustering with optimal leaf ordering[11] was performed in Figure 6 and Additional file 1: Figure S7 after 

this procedure. 

 

Gene expression data processing 
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Gene expression data used in Figures 3B, 4, 5, and Additional file 1: Figures S4B, S5, and S6 was used 

from the same studies that provided the corresponding ChIP-seq, ATAC-seq, or DNase-seq data. Prior to 

all analysis, the gene expression values (RPKM) were transformed with log2(1+RPKM). The log2-

transformed values were then normalized to have mean of 0 and variance of 1 within each time point for 

each dataset. In Figure 3B and Additional file 1: Figure S4B, we used all blocks with at least one non-zero 

length peak called with ChromTime at any time point in the time course. Peaks that did not overlap a TSS 

were excluded from this analysis. For peaks that overlap multiple TSSs, the average gene expression 

change across all overlapping TSSs was used. 

 

Cumulative average gene expression change as function of peak boundary ranks when 

boundaries are sorted by ChromTime posterior probabilities 

 

In Figure 3B and Additional file 1: Figure S4B, we used all blocks with at least one predicted non-zero 

length peak that overlaps annotated TSSs. For each such block, 𝑖, and each pair of consecutive time 

points, 𝑡 and 𝑡 + 1, we associated both the left and the right peak boundaries, 𝑏𝑖,𝐿 and 𝑏𝑖,𝑅 with the 

average gene expression difference between those time points, 𝑖,𝑡, across all genes whose TSSs 

overlap the block. Then, we sorted the boundaries in decreasing order by their ChromTime posterior 

probability for EXPAND dynamic (left plots) and CONTRACT dynamic (right plots) at each pair of 

consecutive time points. Next, for each dynamic 𝑑 (EXPAND or CONTRACT) and each posterior rank, 𝑘, 

we computed the cumulative average gene expression difference between time points 𝑡 and 𝑡 + 1 across 

all peak boundaries with equal or better posterior rank as 

𝛿�̅�,𝑘,𝑡 =
1

𝑘
∑𝛿𝒷(𝑑,𝑟,𝑡),𝑡

𝑟=𝑘

𝑟=1

 

where 𝒷(𝑑, 𝑟, 𝑡) denotes the block index corresponding to the boundary with rank 𝑟 when peak 

boundaries are sorted by their posterior probabilities of dynamic 𝑑 at time point 𝑡. The plots in both figures 

show 𝛿�̅�,𝑘,𝑡 values (Y-axis) as function of rank 𝑘 (X-axis). 

 

Average rank differences based on gene expression change 
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In Figure 4 and Additional file 1: Figure S5 we compared whether ranking peak boundaries by 

ChromTime posterior probabilities for EXPAND (left panels) and CONTRACT (right panels) dynamics has 

better agreement with gene expression changes than ranking peak boundaries by the number of genomic 

bases they move between consecutive time points when peaks are called at each time point by using 

input data only from that time point. The above comparison provides insights into whether ChromTime’s 

posterior probabilities, which are computed by reasoning jointly about all time points in the time course, 

have benefits compared to analyzing boundary movements of peaks that are called at each time point in 

isolation. To compute the latter in Figure 4 and Additional file 1: Figure S5A we applied ChromTime to call 

peaks at each time point by using as input only data from that time point (ChromTime SINGLE). We then 

used the boundaries of those peaks that overlapped predicted ChromTime peaks called by using data 

from all time points in the time course (ChromTime ALL). In Additional file 1: Figure S5B, we used the 

boundaries of broad peaks called with MACS2[12] with the --broad option that overlap blocks with 

predicted ChromTime ALL peaks. To call MACS2 peaks in H3K4me2 in mouse T cell development[4] we 

additionally used “--nomodel --extsize 200” options. In Additional file 1: Figure S5C, we used the 

boundaries of peaks called with SICER[13] with parameters as recommended[14] that overlap blocks with 

predicted ChromTime ALL peaks.  

 

To determine whether ranking based on ChromTime posteriors or ranking based on boundary 

movements between consecutive time points is better, we evaluated the consistencies of these rankings 

with respect to ranking all boundaries by the change in gene expression of genes whose TSS directly 

overlaps predicted peaks. Blocks with peaks that did not overlap a TSS were excluded from the analyses 

performed for Figure 4 and Additional file 1: Figure S5. For blocks with peaks that overlap multiple TSSs, 

the average gene expression change across all overlapping TSSs was used.  

 

Between a pair of consecutive time points each block is associated with the movements of two 

boundaries – one boundary on the left side and one on the right side. If 𝑀 is the total number of blocks 

with predicted peaks from both methods in each pairwise comparison, then the total number of 
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boundaries at any given time point is 2𝑀. These boundaries include both the boundaries of predicted zero 

length and non-zero length peaks. For a pair of consecutive time points, 𝑡 and 𝑡 + 1, each of these 

boundaries can either stay steady, or expand or contract relative to time point 𝑡.  

 

Expanding peak boundaries of H3K4me2 and H3K4me3 peaks are expected to be found near genes that 

increase in gene expression at time point 𝑡 + 1 relative to time point 𝑡, and vice versa for contracting 

boundaries. To quantify the degree to which ranking by posteriors and ranking by boundary movements 

of peaks in isolation is more consistent with gene expression changes, for each pair of consecutive time 

points 𝑡 and 𝑡 + 1 we computed the following quantities for each boundary 𝑖 and dynamic D:  

 

1) CT(𝑖, 𝐷) – rank of boundary 𝑖 when boundaries are sorted by ChromTime posteriors of dynamic D 

(where D is one of EXPAND (left plots) or CONTRACT (right plots)) in descending order from the 

highest to the lowest posterior. 

2) BM(𝑖,𝐷) – rank of boundary 𝑖 when boundaries are sorted by the number of genomic bases that 

the boundaries of the overlapping peaks called in isolation move. For D = EXPAND (left plots), 

this ranking is performed in descending order from the most expanding to the most contracting 

boundary, and vice versa for D = CONTRACT (right plots). The number of genomic bases that a 

boundary moves is calculated as (−1)𝒻(𝑠)(𝑏𝑖,𝑠,𝑡+1 − 𝑏𝑖,𝑠,𝑡), where 𝑏𝑖,𝑠,𝑡+1 and 𝑏𝑖,𝑠,𝑡 are the genomic 

positions of the peak boundary 𝑖 on side 𝑠 (left or right) at times 𝑡 + 1 and 𝑡 respectively, and 

𝒻(𝑠) = 1 for left end boundaries and 𝒻(𝑠) = 0 for right end boundaries. To handle cases, where 

ChromTime SINGLE or MACS2 or SICER did not call peaks at some time points within a block, 

zero length peaks were created artificially, so that the appearance of non-zero length peaks at 

time points after the first one is treated as a positive boundary movement from a zero length peak 

in the center of the new peak and the disappearance of non-zero length peaks is treated as a 

negative boundary movement to a zero length peak in the center of the disappeared peak. Also, if 

two consecutive time points have no peaks, then the boundary movements for both the left and 

right boundaries are set to 0. This procedure ensures that for each ChromTime ALL peak 
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boundary movement, there exists a corresponding boundary movement based on peaks called in 

isolation. 

3) Δ𝐸(𝑖, 𝐷) – rank of boundary 𝑖 when boundaries are sorted by the change in gene expression at 

time point 𝑡 + 1 relative to time point 𝑡 of the overlapping TSS. The gene expression change at 

each TSS is quantified as 𝐸𝑡+1 − 𝐸𝑡, where and 𝐸𝑡+1 and 𝐸𝑡 are the normalized gene expression 

levels at time points 𝑡 + 1 and 𝑡, respectively. For D=EXPAND (left plots), this ranking is 

performed in descending order (i.e. most up-regulated genes rank first and most down-regulated 

genes rank last), and vice versa for D=CONTRACT (right plots).   

 

In all rankings, ties were broken randomly. Then for each rank 𝑘 in rankings CT and BM, where 1 ≤ 𝑘 ≤

2𝑀, and dynamic D we computed the average Δ𝐸(𝑖, 𝐷) rank of all boundaries up to and including rank k: 

𝜇𝐶𝑇(𝑘,𝐷) =
1

𝑘
∑ Δ𝐸(𝐶𝑇−1(𝑘′,𝐷),𝐷)

𝑘

𝑘′=1

 

and 

𝜇𝐵𝑀(𝑘,𝐷) =
1

𝑘
∑ Δ𝐸(𝐵𝑀−1(𝑘′,𝐷), 𝐷)

𝑘

𝑘′=1

 

 

where 𝐶𝑇−1(𝑘′, 𝐷) and 𝐵𝑀−1(𝑘′, 𝐷) denote the inverse functions of the rankings 𝐶𝑇 and 𝐵𝑀, respectively, 

which return the boundary of rank 𝑘′ according to the corresponding ranking. The two quantities, 𝜇𝐶𝑇(𝑘,𝐷) 

and 𝜇𝐵𝑀(𝑘,𝐷), measure the degree to which rankings CT and BM associate with differential gene 

expression as measured by the ranking Δ𝐸 up to the first 𝑘 boundaries ordered by each ranking. In 

particular, 𝜇𝐶𝑇(𝑘, 𝐷) < 𝜇𝐵𝑀(𝑘, 𝐷) corresponds to the case where CT is more consistent with Δ𝐸 than BM is, 

because the first 𝑘 boundaries according to CT on average rank higher in terms of gene expression 

changes compared to the first 𝑘 boundaries according to BM, and vice versa for  𝜇𝐶𝑇(𝑘, 𝐷) > 𝜇𝐵𝑀(𝑘, 𝐷). In 

Figures 4Aii, 4Bii and the top row in Additional file 1: Figures S5A-C, for each pair of consecutive time 

points 𝑡 and 𝑡 + 1 we plot the difference 𝛿(𝑘,𝐷) = 𝜇𝐵𝑀(𝑘, 𝐷) − 𝜇𝐶𝑇(𝑘, 𝐷) as a function of 𝑘. Thus, positive 

values correspond to ranks for which CT better associates with gene expression as measured by Δ𝐸 than 

BM, and vice versa for negative values. The shaded regions correspond to 95% confidence intervals. 
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Finally, due to large fluctuations of the 𝜇𝐶𝑇 and 𝜇𝐵𝑀 quantities in the top ranks, the plots are shown for 𝑘 ≥

20. 

 

Gene expression changes as function of signal changes for different predicted ChromTime 

dynamics 

 

In Figure 5 and Additional file 1: Figure S6 gene expression changes are plotted as function of signal 

density change and method-specific differential peak score respectively for all peaks annotated with the 

same predicted ChromTime dynamics. First, each block 𝑖 was associated with the difference of the 

normalized log2 gene expression (as defined in the Gene expression section) at the nearest TSS within 

50kb at each pair of consecutive time points 𝑡 and 𝑡 + 1, ∆𝑒𝑖,𝑡.  

 

In Figure 5, to compute the change of signal density we first computed the log2 Control-normalized signal 

density for each block 𝑖 at each time point 𝑡, as: 

 

𝐷𝑖,𝑡 = log2(1 + 𝑅𝑃𝐾𝑀 𝑖,𝑡) − log2(1 + 𝜆𝑖,𝑡) 

 

where 𝑅𝑃𝐾𝑀𝑖,𝑡 denotes the number of reads per kilobase per million mapped reads (RPKM) for the 

corresponding chromatin mark, and 𝜆𝑖,𝑡 denotes the average expected number of reads for all bins in 

block 𝑖 at time point 𝑡. The RPKM and 𝜆𝑖,𝑡 values for each block at each time point were computed over 

the same genomic territory spanning from the left most to the right most coordinate of the predicted peaks 

across all time points in the block. To compute the change in signal density between consecutive time 

points, we computed the difference between the corresponding 𝐷𝑖,𝑡 values: 

 

𝛿𝑖,𝑡 = 𝐷𝑖,𝑡+1 − 𝐷𝑖,𝑡 

 

To visualize the relationship between signal density changes and gene expression changes, the tuples 

(𝛿𝑖,𝑡 , ∆𝑒𝑖,𝑡) were pooled together across all time points in each dataset and a Loess regression with linear 
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polynomials was fitted with the loess function[15] in R with default parameters except for degree=1. In 

cases with too many tuples the R package required excessive memory to compute the loess curves and, 

thus, 10,000 tuples were chosen at random as input for the loess function. 

 

In Additional file 1: Figure S6, the same procedure was applied except that 𝛿𝑖,𝑡 values were defined as 

method-specific differential peak scores of peaks called by different methods. Two independent 

differential peak callers were used, MACS2[12] and SICER[13], which were recommended by a previous 

study that evaluated a number of differential peak callers[14]. For MACS2, we used ”--nomodel --extsize 

147” options. For SICER, we used FDR threshold of 0.01, window of 200 and gap of 600. With each 

differential caller we called differential and common peaks between every pair of consecutive time points 

in each time course according to the instructions in the evaluation study[14]. For each peak caller, we 

intersected ChromTime blocks with all called peaks from the caller and performed the analysis only on 

peaks identified by both ChromTime and the corresponding differential peak caller. We kept overlapping 

continuous segments only if the overlapping differential peaks from MACS2 or SICER were called at pairs 

of time points, which were between the first and the last time point with non-zero length peaks in 

ChromTime blocks. In cases where ChromTime peaks overlapped multiple MACS2 or SICER differential 

peaks, all overlaps were used in Additional file 1: Figure S6. 

 

For MACS2, the differential score was defined as the log2 fold change of the signal of each differential or 

common peak as computed by MACS2. 

 

For SICER, the differential score for each peak was defined as: 

 

(−1)𝑞(− log10min(FDR_A_vs_B, FDR_B_vs_A)) 

 

where 

 

𝑞 = {
1 if FDR_A_vs_B < FDR_B_vs_A
0 otherwise

 



25 
 

 

The differential score for SICER has a negative sign for SICER peaks with enriched signal at the previous 

time point compared to the next time point, and a positive sign for peaks with enriched signal at the next 

time point compared to the previous time point. For peaks for which the FDR outputted by SICER was 0, 

the differential score was defined as the maximum absolute value of the differential scores across all 

peaks with non-zero FDRs multiplied by (−1)𝑞 in order to take into account the direction of enrichment. 

 

Analysis of directional preferences of spatial dynamics of chromatin marks 

 

The average log-ratios in Figure 7 were computed across all tested datasets for the corresponding 

chromatin marks (Table 1). For each time course, we split all ChromTime peaks into two groups, TSS+-

1kb and TSS distal. The TSS+-1kb group contains all peaks whose distance to the nearest TSS is less 

than 1kb as measured with the “bedtools closest” software[10]. All other peaks were put in the TSS distal 

group. For each dataset and each group, we computed the log ratios for each pair of consecutive time 

points after adding a pseudo-count of 10 to each group. We then averaged those log-ratios across all time 

points in the dataset. For marks mapped in at least six time courses, we then plotted the average across 

all tested datasets as a solid black line in each subplot. A two-tailed Mann-Whitney test was performed for 

these marks to assess the statistical significance of the difference between the TSS+-1kb and TSS distal 

groups with the SciPy library[16]. To compute averages and test statistics in Figure 7 and Additional file 1: 

Figure S8, all datasets were treated as independent, except in the case of the mouse hematopoiesis[17] 

and human hematopoiesis[18] data. For human hematopoiesis, data was pooled from all donors in the 

study. For both the human and mouse hematopoiesis time courses, we applied ChromTime on data from 

each branch of the corresponding hematopoietic tree and computed a single average across all branches 

for the corresponding enrichment. The single average was then used in place of the values for each 

individual branch. This was done in order to avoid biasing statistics towards the mouse or human 

hematopoiesis data, since branches in the hematopoietic trees overlap substantially and, thus, cannot be 

treated as independent datasets.  
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