## Automated gene function prediction using metagenome data

Vedrana Vidulin, Tomislav Šmuc, Sašo Džeroski, Fran Supek.

## Additional file 1: Supplementary tables and figures

# Table S1. Description of metagenome phyletic profile (MPP) data sets and their matched phyletic profile (PP) data sets. COG, cluster of orthologous genes. NOG, non-supervised orthologous groups. GO, Gene Ontology.

|         | М           | PP                                                                                                          | Matched PP | Com          | mon charac | teristics                                |
|---------|-------------|-------------------------------------------------------------------------------------------------------------|------------|--------------|------------|------------------------------------------|
|         | Metagenomes | Environments                                                                                                | Genomes    | COG/<br>NOGs | GO terms   | Shared<br>phyla                          |
| MPP-H   | 1267        | <u>H</u> uman gut microbiome                                                                                | 765        | 9556         | 3886       | 4 – Fig.<br>S1c                          |
| MPP-O   | 139         | <u>O</u> cean microbiome                                                                                    | 139        | 14331        | 4087       | 7 – Fig.<br>S1d >=1%                     |
| MPP-I   | 5049        | Freshwater, marine,<br>thermal springs, soil,<br>engineered, human, plants<br>from the <u>I</u> MG database | 2071       | 3536         | 3358       | PP is<br>composed<br>of all<br>available |
| MPP-16S | 20570       | <u>16S</u> rRNA samples from environments in Table S4                                                       | 2071       | 3536         | 3358       | sequenced<br>genomes                     |

## Table S2. Example sets of gene families to which only MPP-H, only MPP-O or both models assigned a specific GO term. Abbreviations as in Table S1.

| GO term                                        | МРР-Н                                                                                                                                                                                                          | MPP-H &<br>MPP-O    | MPP-O                                                                                                                                    |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Carbohydrate biosynthetic process (GO:0016051) | COG763, COG774, COG1212,<br>COG1560, COG1663, COG3563                                                                                                                                                          | -                   | COG381, COG1044,<br>COG1083, COG1091,<br>COG1898                                                                                         |
| Cell motility<br>(GO:0048870)                  | COG1256, COG1291, COG1536,<br>COG1558, NOG42595                                                                                                                                                                | COG1815,<br>COG1868 | COG1677, COG1749,<br>COG2063                                                                                                             |
| Pathogenesis<br>(GO:0009405)                   | COG5613, NOG11699, NOG12853,<br>NOG13696, NOG14612, NOG18563,<br>NOG25967, NOG25973, NOG26011,<br>NOG40012, NOG40270, NOG42629,<br>NOG43838, NOG46381, NOG47700,<br>NOG71760, NOG74835, NOG85163,<br>NOG149123 | -                   | NOG14341, NOG149417                                                                                                                      |
| Transposition<br>(GO:0032196)                  | COG3436, NOG28899, NOG261425                                                                                                                                                                                   | COG3547             | COG2963, COG3039,<br>COG3293, COG3328,<br>COG3385, COG3464,<br>COG3666, COG4644,<br>COG5421, COG5433,<br>NOG4436, NOG44148,<br>NOG122322 |

#### Table S4. The individual studies representing distinct environments that were sampled from the Qiita database.

A number of samples represents a subset of samples from a study for which precomputed operational taxonomic units (OTUs) are available.

| Environment/Study                                                                                                          | Study ID | # samples |
|----------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| Amazonian leaf microbiome                                                                                                  | 10245    | 120       |
| Antibiotic perturbation of the murine gut microbiome                                                                       | 10469    | 391       |
| Alaskan arctic tundra ecosystem                                                                                            | 1883     | 3153      |
| Bacterial communities associated with the lichen symbiosis                                                                 | 929      | 16        |
| Bacterial communities associated with the surfaces of fresh fruits and vegetables                                          | 1671     | 214       |
| Bacterial communities present on fermented foods                                                                           | 10395    | 32        |
| Bacterial community on eggshells                                                                                           | 1694     | 562       |
| Barn swallow microbiome                                                                                                    | 231      | 83        |
| Bat fecal microbiome                                                                                                       | 1734     | 94        |
| Beach sand microbiome                                                                                                      | 10145    | 114       |
| Bee microbiome                                                                                                             | 1064     | 307       |
| Bovine milk bacterial communities                                                                                          | 10/85    | 228       |
| Cannabis soil microbiome                                                                                                   | 10403    | 220       |
| Caporaso Glen Canvon soil microbiome                                                                                       | 1526     | 95        |
| Chick gut microbiome                                                                                                       | 10291    | 119       |
| Chu Changbai mountain soil microbiome                                                                                      | 1702     | 22        |
| Co-digestion microbiome                                                                                                    | 10137    | 183       |
| Bacterial communities associated with different human sites                                                                | 449      | 600       |
| Disordered microbial communities in the upper respiratory tract of cigarette smokers                                       | 524      | 290       |
| Estuarine bacterioplanktonic communities                                                                                   | 10470    | 128       |
| Florida decay wastewater microbiome                                                                                        | 1818     | 198       |
| Golden frog bacterial community                                                                                            | 10196    | 37        |
| Green iguana hindgut microbiome                                                                                            | 963      | 100       |
| Gut microbiome of hibernating bears                                                                                        | 2300     | 96        |
| Gut microbiota in Burmese pythons                                                                                          | 391      | 130       |
| Gut microbiota of Grants gazelles                                                                                          | 10323    | 745       |
|                                                                                                                            | 10407    | 44        |
| Hawaii Konana Voicanic soli microbiome                                                                                     | 1579     | 128       |
|                                                                                                                            | 1364     | 1907      |
| Infant feral samples                                                                                                       | 10293    | 130       |
| Intestinal microbes of sleep deprived flies                                                                                | 1799     | 154       |
| Kakamenga Kenya soil microbiome                                                                                            | 1711     | 77        |
| Kilauea geothermal soils microbiome and biofilms                                                                           | 895      | 5         |
| Lung microbiome of HIV infected individuals                                                                                | 959      | 143       |
| Malaysia Lambir soil microbiome                                                                                            | 1713     | 34        |
| Mammalian corpse decomposition microbes                                                                                    | 10142    | 635       |
| Marine mammal skin microbes                                                                                                | 1665     | 186       |
| Microbes in Melbourne water catchments                                                                                     | 894      | 1994      |
| Microbes from public restroom surfaces                                                                                     | 1335     | 109       |
| Microbial communities of whitehead bats gut                                                                                | 2338     | 192       |
| Microbial communities on money                                                                                             | 375      | 660       |
| Microbial flora in ant-eating mammals                                                                                      | 1056     | 93        |
| Microbiology of malting and brewing                                                                                        | 10105    | 499       |
| Microbiota of freshwater fish slime and gut                                                                                | 940      | 275       |
| Microbiota of the insect out                                                                                               | 1000     | 139       |
| Microprogramisms from cold polluted coastal sediments                                                                      | 10124    | 52<br>61  |
| Monoplian steppe microbes                                                                                                  | 864      | 230       |
| New Zealand terrestrial Antarctic microbes                                                                                 | 1035     | 121       |
| Nicaragua coffee soil microbiome                                                                                           | 1715     | 61        |
| Gut microbiome in obese and lean twins                                                                                     | 77       | 281       |
| North Atlantic water column microbiome                                                                                     | 2080     | 54        |
| Oral microbiota in captive Komodo Dragons                                                                                  | 1747     | 210       |
| Gut bacteria of Peruvian rainforest ants                                                                                   | 10343    | 471       |
| Microbiome of green roofs in New York                                                                                      | 1674     | 151       |
| Bacterial communities associated with river sediment particles                                                             | 807      | 44        |
| Metagenome of soil at different pH levels                                                                                  | 805      | 14        |
| Microbes associated with the bulk soil, rhizosphere, roots, leaves, flowers and grapes from 4 Merlot vine clonal varieties | 1024     | 348       |
| Sponge microbiome                                                                                                          | 1740     | 1403      |
| Squirrel gut microbiota                                                                                                    | 926      | 46        |
| Lebransh Intestinal Microbiota                                                                                             | 1192     | 47        |
| vvnitenead tish microbiome                                                                                                 | 10308    | 1208      |

**Table S6. Slopes of the lines from Fig. 6a and Fig. S6a.** Values in the table represent slopes of the regression lines for phyletic profiles and metagenome phyletic profiles with different sampling approaches. Large numbers (green boxes) represent steeper slopes, which indicate larger improvements in accuracy (measured as cross-validation area under precision-recall curve (AUPRC)) with addition of new metagenomes. In contrast, small numbers (red boxes) represent less steep and negative slopes, which indicate saturation and suggest no further improvement from additional metagenomes. Slopes for (a) metagenomes from MPP-I and (b) 16S rRNA from MPP-16S. Abbreviations: IC = information content.

#### Metagenome sequencing

| (a) | a) Biological process       |      |      |       |       |       |        |        |        |      |      | M     | olecula | r funct | ion    |        | Cellular component |      |      |       |       |       |        |        |        |  |  |
|-----|-----------------------------|------|------|-------|-------|-------|--------|--------|--------|------|------|-------|---------|---------|--------|--------|--------------------|------|------|-------|-------|-------|--------|--------|--------|--|--|
|     |                             | ≤ 20 | ≤ 50 | ≤ 100 | ≤ 200 | ≤ 500 | ≤ 1000 | ≤ 2071 | ≤ 5049 | ≤ 20 | ≤ 50 | ≤ 100 | ≤ 200   | ≤ 500   | ≤ 1000 | ≤ 2071 | ≤ 5049             | ≤ 20 | ≤ 50 | ≤ 100 | ≤ 200 | ≤ 500 | ≤ 1000 | ≤ 2071 | ≤ 5049 |  |  |
|     | Phyletic profiles           | 83   | 81   | 165   | 43    | -91   | 24     | 48     |        | 126  | 70   | 9     | -65     | 86      | -40    | 55     |                    | 131  | 123  | 86    | -75   | 85    | -29    | 52     |        |  |  |
| ~   | Random sampling             | 83   | 70   | 85    | 2     | 54    | -66    | 68     | 30     | 98   | 50   | 154   | 58      | -31     | 36     | -3     | -56                | 93   | 33   | 68    | 121   | -21   | 66     | -149   | -20    |  |  |
|     | Maximum diversity sampling  | 50   | 65   | 147   | 134   | 40    | -126   | 18     | 98     | 121  | -8   | 230   | -3      | 7       | -84    | -34    | -6                 | 89   | 89   | 79    | 161   | -168  | 72     | 20     | -95    |  |  |
| ≝   | Minimum diversity, sample 1 | 30   | 39   | -27   | 25    | 34    | 73     | 159    | 147    | 60   | 65   | 22    | -26     | 51      | 167    | 50     | -6                 | 39   | 56   | 25    | 3     | 9     | 56     | 119    | 23     |  |  |
|     | Minimum diversity, sample 2 | 33   | 33   | 29    | 35    | 54    | 69     | 87     | 132    | 65   | 54   | -42   | 29      | 137     | 66     | 120    | -72                | 24   | 61   | -4    | 65    | 125   | 130    | 23     | -57    |  |  |
|     |                             |      |      |       |       |       |        |        |        |      |      |       |         |         |        |        |                    |      |      |       |       |       |        |        |        |  |  |
| ~   | Phyletic profiles           | 60   | 153  | 85    | 23    | 38    | 10     | 7      |        | 52   | 67   | 51    | 39      | 16      | 10     | 9      |                    | 64   | 85   | 31    | 13    | 46    | 10     | 12     |        |  |  |
| vi  | Random sampling             | 84   | 50   | 4     | 52    | 26    | -7     | 0      | -1     | 76   | 34   | 16    | 29      | 19      | 3      | -7     | -3                 | 118  | 35   | -6    | 44    | -13   | 39     | -21    | -20    |  |  |
| 2   | Maximum diversity sampling  | 73   | 67   | 55    | 8     | 21    | 17     | -31    | 23     | 71   | 43   | 37    | 29      | 2       | 11     | . 2    | -11                | 103  | 71   | -3    | 27    | 7     | 15     | 3      | -14    |  |  |
| 4   | Minimum diversity, sample 1 | 52   | 29   | 2     | 9     | 5     | 56     | 120    | 35     | 46   | 31   | 17    | 17      | 15      | 34     | 63     | 31                 | 96   | 28   | -5    | 14    | 30    | 4      | 43     | 15     |  |  |
|     | Minimum diversity, sample 2 | 47   | 13   | 6     | 23    | 47    | 77     | 80     | 30     | 41   | 26   | -14   | 1       | 68      | 66     | 44     | 25                 | 80   | 21   | 25    | -3    | 56    | 40     | 33     | 18     |  |  |
|     |                             |      |      |       |       |       |        |        |        |      |      |       |         |         |        |        |                    |      |      |       |       |       |        |        |        |  |  |
|     | Phyletic profiles           | 126  | 45   | 26    | 6     | 9     | 8      | 2      |        | 141  | 30   | 25    | 23      | 6       | 3      | 5      |                    | 175  | 45   | 19    | 14    | 15    | 11     | -1     |        |  |  |
| 4   | Random sampling             | 138  | 14   | 13    | 8     | 9     | 6      | -1     | 2      | 166  | 17   | 2     | 14      | 3       | -1     | 7      | 5                  | 188  | 13   | 10    | 16    | 12    | 5      | 4      | -1     |  |  |
| ×   | Maximum diversity sampling  | 139  | 17   | 10    | 12    | 3     | 0      | 6      | 1      | 162  | 29   | -1    | 8       | 16      | -2     | 2      | 5                  | 184  | 28   | 5     | 19    | 6     | 1      | 5      | 6      |  |  |
| ≝   | Minimum diversity, sample 1 | 126  | 22   | 5     | -2    | 6     | 12     | 32     | 18     | 147  | 26   | 8     | 6       | 9       | 5      | 29     | 34                 | 173  | 16   | 12    | 2     | 5     | 14     | 41     | 24     |  |  |
|     | Minimum diversity, sample 2 | 120  | 11   | 3     | 8     | 24    | 29     | 27     | 18     | 148  | 5    | -2    | 4       | 19      | 30     | 15     | 42                 | 166  | 14   | 8     | 12    | 14    | 52     | 16     | 26     |  |  |

#### 16S rRNA sequencing

| (Ь)    |                            | Biological process |      |       |       |       |        |        |        |         |         |      | Molecular function |      |       |       |        |        |        |         |         |      | Cellular component |       |       |       |        |        |        |         |         |  |  |  |
|--------|----------------------------|--------------------|------|-------|-------|-------|--------|--------|--------|---------|---------|------|--------------------|------|-------|-------|--------|--------|--------|---------|---------|------|--------------------|-------|-------|-------|--------|--------|--------|---------|---------|--|--|--|
|        |                            | ≤ 20               | ≤ 50 | ≤ 100 | ≤ 200 | ≤ 500 | ≤ 1000 | ≤ 2071 | ≤ 5049 | ≤ 10000 | ≤ 20570 | ≤ 20 | ≤ 50               | ≤100 | ≤ 200 | ≤ 500 | ≤ 1000 | ≤ 2071 | ≤ 5049 | ≤ 10000 | ≤ 20570 | ≤ 20 | ≤ 50               | ≤ 100 | ≤ 200 | ≤ 500 | ≤ 1000 | ≤ 2071 | ≤ 5049 | ≤ 10000 | ≤ 20570 |  |  |  |
|        | Phyletic profiles          | 126                | 116  | 130   | -4    | -72   | 14     | 59     |        |         |         | 130  | 116                | 13   | -91   | 118   | -54    | 56     |        |         |         | 120  | 76                 | 82    | -11   | 135   | -135   | 24     |        |         |         |  |  |  |
| ~<br>^ | Random sampling            | 109                | 208  | -3    | 29    | -28   | -60    | 14     | -41    | 129     | -31     | 144  | 26                 | 21   | 38    | 14    | 26     | -47    | 26     | -71     | 67      | 169  | -57                | 65    | -39   | 50    | 30     | -10    | -35    | 75      | -22     |  |  |  |
| 잍      | Maximum diversity sampling | 135                | 64   | 49    | -91   | 89    | -71    | 66     | -13    | -109    | 110     | 153  | 57                 | -19  | -91   | -21   | 102    | -51    | 118    | -16     | -39     | 106  | 172                | -27   | 108   | -76   | 91     | -53    | 88     | -81     | 35      |  |  |  |
|        | Minimum diversity sampling | 73                 | 44   | -12   | 48    | -56   | 11     | 15     | 174    | 98      | 47      | 114  | 14                 | -70  | 163   | -53   | -14    | 16     | 97     | 55      | 24      | 85   | -1                 | 106   | 39    | 97    | -219   | 184    | 46     | 20      | 77      |  |  |  |
|        | Phyletic profiles          | 64                 | 176  | 109   | 40    | 40    | 6      | 14     |        |         |         | 55   | 78                 | 55   | 38    | 20    | 3      | 14     |        |         |         | 73   | 101                | 37    | 15    | 55    | 14     | 13     |        |         |         |  |  |  |
| М      | Random sampling            | 93                 | 21   | 53    | 5     | -2    | 23     | 8      | 27     | 11      | 12      | 90   | 8                  | 11   | 21    | 3     | 10     | 8      | 2      | -17     | 24      | 118  | 6                  | 10    | 19    | -4    | 21     | -23    | 27     | -12     | 12      |  |  |  |
| ×      | Maximum diversity sampling | 86                 | 64   | 43    | 9     | -3    | -2     | 26     | 23     | -7      | 22      | 89   | 11                 | 38   | -14   | -15   | 35     | -1     | -7     | 20      | 11      | 120  | 6                  | 18    | 9     | -2    | 3      | 3      | 11     | -4      | 6       |  |  |  |
| ~      | Minimum diversity sampling | 67                 | 12   | -3    | 18    | 0     | 15     | -4     | 95     | 49      | 69      | 65   | 32                 | -2   | 17    | 18    | -12    | -1     | 61     | 12      | 24      | 105  | 19                 | -20   | 25    | 17    | 7      | 1      | 25     | -2      | 32      |  |  |  |
|        | Phyletic profiles          | 128                | 46   | 26    | 6     | 8     | 9      | 2      |        |         |         | 141  | 30                 | 25   | 23    | 6     | 3      | 5      |        |         |         | 175  | 45                 | 19    | 14    | 15    | 11     | -1     |        |         |         |  |  |  |
| 4      | Random sampling            | 139                | 9    | 5     | 8     | 3     | 4      | -2     | 3      | 5       | 3       | 153  | 7                  | 14   | 1     | 3     | 7      | 1      | 3      | 2       | -1      | 194  | 3                  | 8     | 9     | 2     | 0      | -3     | 8      | -6      | 6       |  |  |  |
| 브      | Maximum diversity sampling | 138                | 13   | 8     | 9     | 1     | 1      | 3      | 2      | 2       | 5       | 154  | 7                  | 14   | 3     | -2    | 11     | -3     | 5      | -3      | 5       | 193  | 15                 | 3     | 5     | 0     | 0      | -1     | 5      | 5       | 3       |  |  |  |
|        | Minimum diversity sampling | 129                | 12   | 3     | 1     | 7     | 2      | -2     | 27     | 11      | 14      | 143  | 9                  | 3    | 11    | 6     | 2      | 0      | 20     | 11      | 14      | 180  | 17                 | -8    | 13    | 8     | -1     | 2      | 30     | 11      | 7       |  |  |  |



**Fig. S1. Predictive accuracy and phylogenetic diversity of the MPP-H and MPP-O data sets.** (a) Distribution of MPP-H and MPP-O accuracies (expressed as AUPRC) on 451 and 325 learnable GO functions, respectively. GO functions are divided in groups according the GO domain. Baselines are constructed from randomized MPP-H/MPP-O data obtained by randomly assigning GO functions to COGs in the same proportions they were assigned to the original data. (b-d) Phylogenetic diversity of phyletic profiles composed of 985 microorganisms (b), MPP-H (c) [1] and MPP-O (d) [2], expressed on the level of phyla. Abbreviations: MPP = metagenome phyletic profiles.



**Fig. S2.** Model accuracy in predicting GO functions from metagenomes representing distinct environments. (a) GO functions that are predicted from all seven environments are associated with COGs that are frequently-occuring in microbial genomes. GO function occurrence (y-axis) is measured as the sum of the number of microorganisms in which each COG having that function occurs. (b) Predictive accuracy of GO functions expressed as function-specific accuracy of the environment-representing MPP. Rows in heatmaps represent GO functions, columns environments and brighter colors higher accuracy (expressed as cross-validation AUPRC). The first two heatmaps in the first row are equal to the heatmaps in Fig. 2b. IC stands for information content.



**Fig. S3. Distributions of COG pairwise similarities, related to networks in Fig. 3.** (a-d) Histograms represent distributions of non-zero COG similarities (COGs from Fig. 3; similarity is measured using Pearson correlation coefficient; absolute values of the coefficients are considered here) computed from MPP-I or matched PP profiles. Similarities are computed using metagenomes/genomes with positive values of Random Forests feature importance (Gini-based). The threshold of 0.7 represents the point above which edges in the networks were retained. MPP, metagenome phyletic profile. PP, phyletic profile.



**Fig. S4. Performance of PP and MPP-I classifiers on the prokaryotic CAFA 2 validation sets**. The F<sub>max</sub> accuracy measure is determined as in the CAFA 2 publication; error bars are standard deviations, obtained by bootstrapping the set of benchmark genes.



Fig. S5. Removing redundant features is not in itself sufficient to improve accuracy of classifiers based on the MPP-I metagenomic dataset. PCC, Pearson's correlation coefficient (between pairs of metagenomes; n denotes the number of remaining metagenomes in the dataset). IC, information content (of GO terms). AUPRC, area under the precision-recall curve.



**Fig. S6.** Effects of diversity and the total number of 16S rRNA data sets on accuracy of gene function prediction. (a) X-axes represent the number of sampled microbiomes with 16S rRNA gene sequencing data. Y-axes represent cross-validation AUPRC averaged over GO functions from a specific domain and of a specific level of generality (IC). Error bars represent standard error of the mean. Maximum diversity sampling tends to retain the same ratio of samples from the environments represented in the data set. Minimum diversity sampling always begins with the largest environment. (b) represents slopes of the regression lines for phyletic profiles and metagenome phyletic profiles with different sampling approaches, as average over the slopes of segments connecting points in plot; complete table in Table S6b. (c) shows the number of environments represented in each data set. Abbreviations: BP = Biological process; MF = Molecular function; CC = Cellular component; IC = Information content.



Fig. S7. Varying the stringency of rule for GO term propagation within gene families. Changing the " $\geq$ 50% genes" heuristic for propagating gene function within a COG/NOG towards higher strigency ( $\geq$ 70%) or lower stringency ( $\geq$ 30%) has only minor effects on accuracy (**a**) and complementarity of predictions provided by PP and MPP-I classifiers (**b-d**). Explanation of diagrams in legend of Fig. S8.



**Fig. S8. Similar complementarity patterns using out-of-bag estimation and 5-fold cross-validation.** Overlap between MPP-I and matched PP in terms of: (**a** and **c**) percentages of GO functions that can be predicted at different levels of precision only by MPP-I, only by PP or by both; (**b** and **d**) percentages of COG gene families to which only MPP-I, only PP or both can assign GO functions (considering those GO functions that can be simultaneously predicted by both MPP-I and PP, represented by the middle part of the bars in **a** and **c**).



**Fig. S9. Accuracy of classification models resulting from different environments.** Same data as Fig. 2b, but with dendrograms showing the hierarchical clustering of the rows, containing classifier accuracy (as AUPRC score) in predicting various GO terms across the seven environments present in the MPP-I data set.

#### **References for Additional file 1.**

- [1] Li, Y., Calvo, S. E., Gutman, R., Liu, J. S., & Mootha, V. K. Expansion of biological pathways based on evolutionary inference. *Cell* **158**, 213-225 (2014).
- [2] Sunagawa, S. *et al.* Structure and function of the global ocean microbiome. *Science* **348**, 1261359 (2015).