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Chapter 1

Getting Started

1.1 Introduction

1.1.1 What is the purpose of our software?

Our software written in C, called Pic-Vert, is a Particle-in-Cell (PIC) code for plasma physics.
Three important steps are required for a code:

• (computer science) it should be efficient. PIC codes are usually memory bound, as a recent
paper [17] points out: “metrics such as flop/s or percentage-of-peak are less relevant for the
predominantly memory-bound gyrokinetic PIC methods, as modern architectures require 10
flops per byte moved from DRAM in order to be compute-limited.”. One should then show
some memory bandwidth usage.

• (mathematics) it should be verified. Some test cases have almost-exact theoretical solu-
tions. One should verify that the code outputs the desired solution. For other test cases,
some other diagnostics may be performed to assess correctness of the results, like the
conservation of total energy.

• (physics) it should be validated. The physical model used in a given code always have some
limitations. One should validate the model chosen with real-life simulations.

For performance, we provide a PIC code that (a) achieves close-to-minimal number of memory
transfers with the main memory, (b) exploits SIMD instructions for numerical computations and
(c) exhibits a high degree of OpenMP-level parallelism. We also coded MPI parallelism through
particle decomposition, even though for future work in 3d, domain decomposition is a better
approach. This last layer of parallelism is thus not the core of our work.

For verification, we simulate a classical 3d Landau-damping test case [4, 11]. We use the
same parameters as in [16]. It is possible to test the correctness of the simulation by comparing
the decay slope with the theoretical value obtained from the dispersion analysis (γ = −0.008466).

For validation, we simulate a 2d3v electron hole test case [14]. We are able to reproduce
the results of this paper, which are validated by satellite measurements of phase-space holes in
various parts of the magnetosphere.

1.1.2 How to check our results?

Depending on the hardware you can use, you will be able to check some parts of our results or
all of them.

First, you need to install dependencies, as explained in Section 1.2. Then you need to edit
our compile scripts in order to compile and run our code, as explained in Section 2.1. Finally,
you will then be able to compare the outputs of the simulation to our claims, as explained in
Section 2.4.
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For performance, Pic-Vert requires that you use the full machine: as many threads as you
have cores, and as many particles as can fit in memory. You can test Pic-Vert on your laptop,
even though for performance it is probably not the best choice. Be aware that:

• by the number of cores, we refer to the number of physical cores. On one of our lap-
tops, “About this laptop” will tell us that we have “Intel R© CoreTM i5-6300U CPU @
2.40 GHz x 4”. But if we type lstopo inside a terminal, we see that there are in fact only 2
physical cores with two processing units inside each of them, leading to 4 processing units
in total (hyper-threading). Because our PIC code is memory bound, we wrote scripts in
order to use only physical cores, which avoids hyper-threading. Whenever we run Pic-Vert
on this laptop, we thus use 2 threads. If you try to put more threads than the number of
physical cores, our script will output an error.

• by the memory available, we mean the total memory available minus the memory already
in use by the Operating System (and maybe other applications). On the same laptop,
“About this laptop” will tell us that we have 15.6 GB available. But if we type htop inside
a terminal, we see that there are typically already 2 GB used. So there is only 13.6 GB of
memory left for our simulations (if we use more, there will be memory swapping, and this
greatly decreases performance).

Before running test cases to match our results, you may want to run a quick test on your
laptop, just to know if everything runs fine. When you edit the scripts, you can then reduce
the number of particles (about 10 millions) and reduce the number of iterations (about 20).
This should run quickly (less than a minute) and already prove that everything runs without
problem. Then, you can increase those numbers (increase the number of particles to match our
requirement that there are a lot of particles per grid cell; increase the number of iterations so
that the average time per iteration computed makes good statistical sense).

If you can use a dedicated server with more cores (maybe around 20), then of course the
performance should be more in accordance to our results. We think that this is probably the
best option, as you probably have one of such computers available within your research team.

In the two last cases, it will not be possible to test MPI scaling of our code, like we did on
128 MPI processes. This is not a crucial claim in our paper. You can test the MPI scaling of our
code if you can use a dedicated supercomputer, but the scripts to run Pic-Vert are not included
within this artifact. We can help you build those scripts if needed, just contact us.

As a first side note, we would like to say that the 3d test case is the most important one.
Then comes our claim that our code is still efficient with a substantial number of fast particles.
Finally comes our 2d3v test case, which takes more time to check (HDF5 outputs to be opened
with VisIt in addition to the performance check).

As a second side note, we encourage you to run simulations with some slight changes in the
parameters, in order to be convinced that our code is really a plasma simulation, and does not
just mimic it before outputting pre-determined diagnostics. We believe that by providing our
source code, you will not fear that we are “cheating” on the outputs of our software.

1.1.3 What is in the artifact?

This artifact is composed of several folders:

• include and src contain all the modular code for Pic-Vert (as .h and .c files). By opening
them, it is possible to check that we implemented the data structures we describe in the
paper:

– compiler_test.h: compiler check to know which features we can use.

– diagnostics.c/h: electric field diagnostics.
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– fields.c/h: data structure for the electric fields.

– hdf5_io.c/h: handling of HDF5 outputs.

– initial_distributions.c/h: possible initial distributions of particles.

– math_functions.h: useful mathematical functions not already in standard libraries.

– matrix_functions.c/h: dynamic allocation of arrays.

– meshes.c/h: data structure for the grid.

– output.c/h: handling of outputs other than HDF5.

– papi_handlers.c/h: handling of PAPI [18] performance counters.1

– parameter_reader.c/h: reading parameter files for simulations.

– parameters.h: useful parameters (architecture, mathematics, simulation. . . )

– particle_type_concurrent_chunkbags_of_soa_XXX.c/h: data structure for parti-
cles.23

– poisson_solvers.c/h: data structure for the FFT Poisson solver.

– random.c/h: pseudo-random number generators available.

– rho.c/h: data structure for the charge density.

– space_filling_curves.c/h: use of space-filling curves in the code.4

– variadic.h: allows to write function with default arguments in C.5

• simulations contains the PIC simulations that we used for this article, and that uses the
files in the previous point.6

• scripts contains the compile and run scripts for our simulations.

• memory contains spread sheets to compute the number of particles you should put in the
simulation, given your architecture (prior to compilation). This step is explained later.

• Stream-test contains the Stream benchmark [13], in order to detect the practical memory
bandwidth peak of your architecture. Please be aware that the theoretical peak of your
architecture may not be the one given by the vendor, as maybe not all the memory channels
are installed. To know how many channels are installed, please look at the memory banks
after you type:

sudo lshw -class memory

• post-process contains scripts to “automate data extraction and the production of plots”.

• sample-outputs contains “files that represent expected outputs”.
1They can be activated in our code with -DPAPI_LIB_INSTALLED, provided that you installed the PAPI library

first.
2The thread-safe atomic insertion operation can be found on line 422 of the C file, inside the function

bag_push_concurrent.
3Our claim that “the space used by our algorithm, in addition to the minimal amount of memory needed to

represent the particles, grows in proportion with: 4K · nbCells · sizeof(particle)” can be checked in the function
init_all_chunks. This function is much more general than what we describe in our paper. In our paper,
nb_bags_per_cell is equal to 2, which implies that number_of_spare_chunks_per_parity is equal to 2 · nbCells,
and because a chunk weights in memory K · sizeof(particle), our claim can be verified on line 817 of the C file.

4They are particularly useful with other data structures for particles [2].
5This somehow mimics the default argument feature, e.g. in C++ or Fortran.
6It is possible to check that we implemented the algorithm shown in Figure 2. The “Foreach time step” of

line 5 of this algorithm starts at line 592 in sim3d_aocosoa.c, with the for loop on the variable i_time.
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1.1.4 Can we customize the artifact?

Apart from the runs we detail in this document, other test cases are available. They are doc-
umented in the files initial_distributions.c/h. You may add some initial distributions if
needed. All the parameters can be modified in the parameter files (see parameters_2d3v.txt
for a 2d3v simulation or parameters_3d.txt for a 3d simulation). We can provide simulation
files in 1d or 2d if needed, and we plan to have the full code of our software (including other
data structures, other simulations, information on how to tune the data structures and loop
optimizations depending on your architecture. . . ) available as Open Source.

1.2 Dependencies

1.2.1 What are the dependencies?

Pic-Vert has several “additional software to install”:

• a C compiler that supports OpenMP [5]. The compiler must at least support OpenMP 3.0,
but it is better if it supports OpenMP 4.0 (#pragma omp simd; without this support, those
pragmas are desactivated in our code, but the vectorization would then be done with the
automatic vectorization from the compiler which usually gives less satisfactory results).
For example, icc supports OpenMP 4.0 since version 15.0 and gcc since version 4.9.1.

• an MPI [6] wrapper. All the scripts are given for a standard installation of OpenMPI [9],
but you should be able to modify them to use another wrapper if needed.

• the FFTW3 library [8].

• the HDF5 library [10]. This dependency is only needed if you want to output an HDF5
file for the data needed for Figure 4. Note that for this image we needed to use a lot of
memory to fit 64 billion particles (hence a lot of compute nodes). If you have only access
to a standard machine and have to use less particles (e.g. 2 billion), you will have a image
with more noise. However, most of our claims are on the 3d code, so if you cannot install
the HDF5 library, you can test our 3d code, which does not require the HDF5 library. If
really needed, we can re-write our 2d3v code to get rid of this dependency, and output
binary and/or ascii files instead, but this would decrease performances.

1.2.2 Which precise versions were used for our paper?

In our paper, the following versions of dependencies have been used:

• icc 17.0.4, icc 18.0.0, gcc 5.4.0 and gcc 6.4.0. Performance results are presented in our
paper with an Intel-compiled code. If using another compiler, variations in performance
may happen. In our tests with the GNU compiler, there are not much differences for our
Pic-Vert code, but there is sometimes up to 30% memory bandwidth variation for the
Stream test, a variation also reported by others7.

• OpenMPI versions 1.10.2 and 1.10.3.

• FFTW version 3.3.4.

• HDF5 versions 1.8.16 and 1.8.17.
7https://software.intel.com/en-us/forums/intel-c-compiler/topic/599289

https://software.intel.com/en-us/forums/intel-c-compiler/topic/599289
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1.2.3 How to install these dependencies?

We guess that you already have one favorite C compiler installed. For the other dependencies,
here is how to install them under Ubuntu:

For openmpi and hdf5 type:

sudo apt-get install libopenmpi-dev openmpi-bin libhdf5-openmpi-dev

For the FFTW library, type:

sudo apt-get install libfftw3-dev

1.3 What are the post-processing tools needed?

To reproduce the figures in our paper, the following tools are needed:

• a tool like gnuplot [19] to convert output files to graphs for Figure 3 and Figure 5.

• a tool like VisIt [12] to convert the HDF5 files to images for Figure 4.

• a standard spread sheet editor like Libre Office Calc [7].
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Chapter 2

Step-by-Step Instructions

2.1 Compiling and Running

All the compile (a_compile_XXX.sh) and run (b_run_XXX.sh) scripts needed for Pic-Vert are
inside Pic-Vert/scripts. We have 4 different set of scripts, in order to prove the different claims
of our article:

• 3d_performance is here to assess our claim that in 3d, our algorithm achieves “30.4 million
particles per second per core” and “54% of the practical peak” (memory bandwidth). It
also allows to verify Figure 3.

• Heat_crossing is here to assess the 4 first lines of Table 1 (7 test cases that achieve the
given percentages for particle crossing and atomic pushes).

• Heat_performance is here to assess the last line of Table 1 (the slowdown due to fast
particles in the 6 last cases, with respect to the first test case).

• 2d3v_performance is here to assess our claim that in 2d3v, our algorithm achieves “40.7 mil-
lion particles per second per core”. It also allows to verify Figure 4 (although you should
have an image with more noise if you have to use less particles) and Figure 5.

An additional folder, Pic-Vert/Stream-test, allows to test the practical memory bandwidth
peak, with the Stream benchmark [13]. It also contains compile and run scripts.

Before starting, you have some modifications to make. Modify the system parameters in
your_configuration.sh:

Choose your compiler. Here, scripts are only given for icc and gcc. If you want to use
another compiler, it should be possible, please modify the scripts accordingly. Managing the
thread affinity is crucial for performance: feel free to use your preferred compiler as long as you
can manage the thread affinity. Change the following line if needed:

compiler=icc

If you use icc, please make sure to enter the correct path to the dynamic Intel OpenMP
library libiomp5.so, by modifying the following line:

INTEL_OPENMP_DYNAMIC_LIBRARY_PATH=/opt/intel/.../intel64_lin/

Choose your architecture parameters. The number of threads and sockets has to be
chosen. As an example, in our configuration, we launch simulations on a processor which is
made of two 24-cores sockets. So the number of sockets would be 2 and the number of threads 24
(leading to a total number of 48 threads). Please put as many sockets as you have NUMA nodes
to avoid NUMA bandwidth problems, and put as many threads as there are cores per NUMA
node. Change the following lines if needed:
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nb_threads=10
nb_sockets=2

Update library paths if needed. If the compiler complains, you have to add the FFTW
library path in the compile script, with -I/your/path/to/header -L/your/path/to/library.
We did not have to do it on the different hardwares we tested, but you will maybe have to do
it. For the 2d3v simulation only, however, it is mandatory to check for the path of the external
library HDF5 (and possibly zlib if your compiler complains, exactly as for FFTW). Instructions
to do it quickly are given in your_configuration.sh:

#Include path for hdf5.h (find your right path by typing "locate hdf5.h"
# in a terminal, maybe preceded by "updatedb")
HDF5_HEADER_PATH=/usr/include/hdf5/openmpi

#Library path for libhdf5.a (find your right path by typing "locate libhdf5.a"
# in a terminal, maybe preceded by "updatedb")
HDF5_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu/hdf5/openmpi

Modify the simulation parameters in scripts/the-run-you-want/parameters_XXX.txt or
a_compile_XXX.sh:

Update the number of particles. You have to check the memory you have on one socket
(one NUMA node) of your architecture. In memory/memory-XXX.ods we provide a simple way
to compute the maximum number of particles that can fit, provided that the memory limit of
your architecture is correctly filled. Our hardware had 96 GB of memory, this is the cell you
have to change. If you have a machine with really low memory (e.g., 2 GB), you may also lower
the number of grid cells to be able to fit more particles. Do not forget to update the parameter
files in this case. Please set the number of particles as close as possible to this maximum, as
our software makes the assumption - explicitly written in our paper - that there is a relatively
high number of particles per grid cell. To set the number of particles per NUMA node in the
simulation, please edit the following line in the parameter file:

nb_particles=XXX

(this line has to be modified in the compile script instead of the parameter file for the “heat”
simulations because it was more convenient to change the value in just one file rather than in 7
different parameter files, as there are 7 different “heat” test cases).

TL;DR: edit your_configuration.sh; modify the variables nb_runs, compiler, nb_threads
and nb_sockets (if not sure, begin with 1 socket and 1 thread for a quick test). Modify the
variable INTEL_OPENMP_DYNAMIC_LIBRARY_PATH if you use icc.

Edit scripts/the-run-you-want/parameters_XXX.txt; modify the variables nb_particles
and nb_iterations if needed (10 millions particles with 20 iterations allows a quick test). Do
not try the 2d3v test case first, as it takes more time.

Warning: OpenMPI outputs a warning because we use the deprecated feature --cpus-per-proc.
This should not be a problem.

2.2 Our hardware configuration and performance results

Our hardware is the one available on the A3 partition of the EUROfusion Marconi supercom-
puter1. Each node is made of two sockets, where a socket is an Intel Xeon Platinum 8160 @
2.1 GHz (Skylake), with 96 GB of RAM, 6 memory channels, and 24 cores 2. The theoretical

1https://www.cineca.it/en/content/marconi
2https://ark.intel.com/products/120501

https://www.cineca.it/en/content/marconi
https://ark.intel.com/products/120501
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memory bandwidth peak of our hardware is 127.99 GB/s 3. The practical peak, as measured
by the Stream benchmark [13], is 98.2 GB/s. Our C code was compiled using Intel C Com-
piler 17.0.4, and the FFTW3 library for the Poisson solver. To avoid as much performance
issues as possible, the performances are recorded by running simulations on a full node, one MPI
process per socket, and as many threads as there are cores per socket. Here, it means 2 MPI
processes and 24 OpenMP threads per MPI process.

• Stream benchmark: the scripts together with the results for the Marconi supercomputer can
be found in sample-outputs/Stream-test. For each Stream run, we extracted the “triad”
results (which provided the highest memory bandwidth) in skylake-bandwidth.dat. The
raw output from the Stream test from 1 to 24 cores can be found in std_output.txt.

• 3d simulation: the scripts together with the results for the Marconi supercomputer can be
found in sample-outputs/3d_performance.
Results in the paper are given for a grid size of 64 x 64 x 64 on 2 x 24 cores. They
can be found in 3d_performance/std_output_run1.txt. The total execution time was
1370.09 s (22 minutes). The number of particles processed by second was 1.45975 billion,
or 30.4 million particles per second per core.

• Percentages of fast-moving particles: the scripts together with the results for a local ma-
chine can be found in sample-outputs/Heat_crossing. This time we used a local com-
puter instead of the supercomputer Marconi, because we needed a lot of time to tune the
parameters to get the percentages shown in the paper. Waiting for the supercomputer to
run our jobs was not an option, as we had to test, adjust, and modify a lot of times our
parameters.
Results in the paper are given for a grid size of 64 x 64 x 64. They can be found
in each of the sub-folders Heat_crossing/sub-folder/std_output.txt. Those percent-
ages are summarized in Heat_crossing/heat_crossing.ods. The total execution times
vary between 100 s and 120 s (we recall that there is additional instrumentation code
to count the different particles that cross cells, so timings obtained with the simulation
instrum_sim3d_aocosoa.c should not be taken to assess our code’s performance).

• Impact of fast-moving particles on performance: the scripts together with the results for
the Marconi supercomputer can be found in sample-outputs/Heat_performance.
Results in the paper are given for a grid size of 64 x 64 x 64 on 24 cores. They can be found
in Heat_performance/std_output.txt and Heat_performance/heat_performance.ods.
The total execution times vary between 159 s and 170 s.

• 2d3v simulation: the scripts together with the results for the Marconi supercomputer can
be found in sample-outputs/2d3v_performance_XXX.
Results in the paper are given for a grid size of 256 x 256 on 24 cores. They can be found
in sample-outputs/2d3v_performance_256x256/std_output_runXXX.txt. The total ex-
ecution time was around 4116.05 s (1 hour and a quarter). The number of particles pro-
cessed by second was 971.806 million, or 40.5 million particles per second per core.
Additional results for a grid size of 512 x 512 are here given on 2 x 24 cores. They can be
found in sample-outputs/2d3v_performance_512x512/std_output_run1.txt. The total
execution time was 5496.61 s (1 hour and a half). The number of particles processed by
second was 1.8193 billion, or 37.9 million particles per second per core.
Finally, we provide all the diagnostics needed to reproduce our Figure 5. They also con-
tain additional diagnostics to check the total energy; these additional diagnostics require
an additional loop over the particles and therefore reduce the performance. They can be
found in the directory sample-outputs/Muschietti_y_energy.

3https://en.wikichip.org/wiki/intel/xeon_platinum/8160

https://en.wikichip.org/wiki/intel/xeon_platinum/8160
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2.3 The different output files of our simulations

Each time a simulation is run, different outputs are created.
First, the most important one: the parameters and performance outputs, on the standard

output (also stored in a file). For an example 3d simulation from our paper, it reads as follows:

Creation time (2000000000 particles) : 723.24 sec
#CHUNK_SIZE = 256
#VEC_ALIGN = 64
#OMP_TILE_SIZE = 2
#OMP_TILE_BORDERS = 1
#mpi_world_size = 2
#num_threads = 24
#alpha = 0.050000000000000003
#x_min = 0
#x_max = 22
#y_min = 0
#y_max = 22
#z_min = 0
#z_max = 22
#delta_t = 0.050000000000000003
#thermal_speed = 1
#initial_function_case = LANDAU_3D_PROD_OF_ONE_PLUS_COS
#ncx = 64
#ncy = 64
#ncz = 64
#NB_PARTICLE = 2000000000
#num_iteration = 500
---------- Vlasov-Poisson 3d - Array of [Optim] Chunkbags of SoA (1 private + 1 shared / cell) ----------
---------- always sort ----------
Execution time (total) : 1370.09 s
Array of particles update : 1362.32 s (99.4327%)
- Including particle loop : 1357.22 s (99.0606%)
- Including append : 5.09836 s (0.372118%)
Reduction of rho : 4.21777 s (0.307845%)
Poisson solver : 1.27372 s (0.0929657%)
Nb. particles / s : 1.45975e+09
Time / particle / iteration : 0.681161 ns

You have first the output of the parameters chosen, to control that the simulation was run
with the correct parameters. Then comes timings of different parts of the main time loop. Here,
the particle loop (lines 6-23 of our algorithm in Figure 2), then the append phase (lines 24-28),
then the reduction of rho (lines 29-33) and finally the Poisson solver (line 34). The sum of all
those timings gives the total execution time, and the total number of particles divided by the total
execution time gives the number of particles processed by second. As stated in the paper, this
takes into account all the operations performed, not just the particle loop. If taking into account
only the particle loop, this number increases slightly. We also give the time taken for one particle
per iteration, which is sometimes given by papers instead of the number of particles processed
by second (it is of course equivalent to present one or the other). Those performance results
are also given in files print_time_sorting_rankXXX.dat because sometimes we need to check
that every MPI process has roughly the same execution times that the others (on heterogeneous
clusters, it may happen that one will wait for the others to finish at each iteration - if you have
to launch on heterogeneous clusters, then you have to load balance the particles differently, this
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is out of the scope of this paper; on our cluster everything should be homogeneous and if the
timings are not all similar, it probably means that there is a hardware problem).

Then you have a file named diag_lee_XXXcorners.txt (4 corners in 2d3v, 8 corners in 3d). It
gives the electric energy, useful to produce Figure 3. In 2d3v, an additional file diag_energy.txt
additionally gives the energy of the different Fourier modes (and also the kinetic energy if the
code is compiled with -DPIC_VERT_KINETIC_ENERGY; we can then deduce the total energy from
electric and kinetic energies), useful to produce Figure 5.

You also have a file named diag_speed_XXXcorners.txt (4 corners in 2d3v, 8 corners in 3d).
This files outputs performance results iteration by iteration. You can check that the timings are
mostly unchanged during the simulation, from which we can conclude that the performance
results are fairly presented (it would not be fair to present results on the best iterations from a
full simulation).

Finally, for 2d3v simulations, you have hdf5 files (.h5 and .xmf files).

2.4 Comparing outputs to our claims

• Stream-test: once the test is finished, you will have an output that will look like the follow-
ing. In the “Best Rate MB/s” column, take the best of the 4 numbers as the reference peak
memory bandwidth for your hardware. Please go inside post-process/bandwidth3d.ods,
and fill the green cell corresponding to the memory bandwidth of the Stream test (please
convert the result given in MB/s to GB/s).

Function Best Rate MB/s Avg time Min time Max time
Copy: 94698.1 0.407255 0.405499 0.410791
Scale: 93897.0 0.409859 0.408959 0.412704
Add: 98194.6 0.588433 0.586590 0.599418
Triad: 98208.5 0.590043 0.586507 0.616153

• 3d_performance: once the simulation is finished, you can go in post-process/ and type:
gnuplot landau_electric_energy.plot

This should output the same graph as Figure 3.
You should then go in 3d_runs/run1/ (and possibly more if you asked for more than 1 run
to avoid statistical noise). You will find a file named std_output_run1.txt. At the end of
this file, there is a line that begins with Nb. particles / s :. Just divide the number af-
ter by the total number of cores of your processors. This should not necessarily be 30.4 mil-
lion particles per second per core, like us, because it depends on your memory bandwidth.
A better check is to look that the simulation indeed roughly gave 50% of the peak mem-
ory bandwidth. To check for the bandwidth, go inside post-process/bandwidth3d.ods,
and fill the green cells with the parameter you used for the simulation (number of par-
ticles) and the execution time you got from the simulation (the line that begins with
Execution time (total) : ). You will then have the percentage of peak computed
- provided that you also filled the green cell from the Stream benchmark. If the Stream
benchmark does not work, you can always compare the memory bandwidth to the theo-
retical one, as given by your vendor. Please be aware that it is possible that not all the
memory channels are installed on your machine, and that this can modify the theoretical
maximum memory bandwidth.

• Heat_crossing: once the simulation is finished, you can go in post-process/ and type:
./heat_percentages.sh

This will output a file named heat_percentages.txt. You can now check, for each of the
7 test cases, that the percentages given are in accordance with the 4 first lines of Table 1
(7 test cases that achieve the given percentages for particle crossing and atomic pushes).
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• Heat_performance: once the simulation is finished, you can go in post-process/ and
type:

./heat_performance.sh

This will output a file named heat_performance.txt. You can now copy-paste the timings
inside post-process/heat.ods (in the green column) and check that they roughly give
percentages (in the red column) corresponding to the last line of Table 1 (the slowdown
due to fast particles in the 6 last cases, with respect to the first test case).

• 2d3v_performance: once the simulation is finished, you can go in post-process/ and
type:

gnuplot muschietti_electric_energy.plot

This should output a graph with a curve similar to one of the curves in Figure 5, depending
on the number of particles and grid size you could put.
You should then go in 2d3v_runs/run1/ (and possibly more if you asked for more than 1
run to avoid statistical noise). You will find a file named std_output_run1.txt. At the
end of this file, there is a line that begins with Nb. particles / s :. Just divide the
number after by the total number of cores of your processors. This number depends on
your memory bandwidth, and it is not really useful to test the performance both in 2d3v
and in 3d; testing the accordance of your results to ours in 3d is already enough but the
same methodology applies here of course.

You should then open VisIt to reproduce our Figure 4. Click on the “Open” button. Go
in the folder 2d3v_runs/run1, filter by *.xmf and open rho*.xmf database. Then click
on the “Add” button, choose “pseudo color” and “values”. Then click on “Draw”. You can
now manage the different ρ snapshots taken during the simulation with the “Play / Stop /
Next / Previous” buttons.
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