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APPENDIX 1:

Proof of lemma 1: Since g(py,1) is a valid beta probability density, as in , its integration with

respect to pi.1 will be one:
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After replacing g(pg+1) in (17)),

Ky = _F(a +b) / d(Xp41,fs (Xg))+a—1

L(@)l(b) Jp ™
X(1 = prga)" A0 RO Ay (A3)

Using (A2)) and (A3), K is derived as in (I7).

APPENDIX 2:

Proof of lemma 2: It is well-known that the steady-state distribution of a time-homogeneous TPM is
obtained from (18). The conditional TPM A®)(k + 1) in is time-inhomogeneous, since each time
has its own perturbation probability pj;;. Since the prior distribution of py;q in is the same for every
k, integrating the conditional TPM A®)(k + 1), for every k, over the prior distribution of py,; yields a

time-homogeneous TPM with the (i, j)-th entry as
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Lemma 1 and (A4)) result in (19).



APPENDIX 3:

Proof of lemma 3: From (5), the normal-gamma prior for 6;(k) and A;(k) is
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The likelihood from (4)) is
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Therefore, for the posterior,
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where #1, o, and §; are given in (21), and 7;(k) is defined by
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Comparing with (A3)), we see that the posterior also has the following normal-gamma density:
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Since the posterior density in (A8)) integrates to 1,
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Finally, K> in (20) can be written as
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which finishes the proof.



