Additional file 1

Appendix 1:

Proof of lemma 1: Since $g\left(p_{k+1}\right)$ is a valid beta probability density, as in (2), its integration with respect to p_{k+1} will be one:

$$
\begin{align*}
& \int_{\mathbf{P}} g\left(p_{k+1}\right) d p_{k+1}= \tag{A1}\\
& \int_{\mathbf{P}} \frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} p_{k+1}^{a-1}\left(1-p_{k+1}\right)^{b-1} d p_{k+1}=1
\end{align*}
$$

Hence,

$$
\begin{equation*}
\int_{\mathbf{P}} p_{k+1}^{a-1}\left(1-p_{k+1}\right)^{b-1} d p_{k+1}=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)} \tag{A2}
\end{equation*}
$$

After replacing $g\left(p_{k+1}\right)$ in 17),

$$
\begin{align*}
& K_{1}=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \int_{\mathbf{P}} p_{k+1}^{\mathbf{d}\left(\mathbf{X}_{k+1}, \mathbf{f}_{s}\left(\mathbf{X}_{k}\right)\right)+a-1} \\
& \times\left(1-p_{k+1}\right)^{n-\mathbf{d}\left(\mathbf{X}_{k+1}, \mathbf{f}_{s}\left(\mathbf{X}_{k}\right)\right)+b-1} d p_{k+1} \tag{A3}
\end{align*}
$$

Using (A2) and (A3), K_{1} is derived as in (17).

Appendix 2:

Proof of lemma 2: It is well-known that the steady-state distribution of a time-homogeneous TPM is obtained from (18). The conditional TPM $\mathbf{A}^{(\mathrm{s})}(k+1)$ in (15) is time-inhomogeneous, since each time has its own perturbation probability p_{k+1}. Since the prior distribution of p_{k+1} in (2) is the same for every k, integrating the conditional TPM $\mathbf{A}^{(\mathbf{s})}(k+1)$, for every k, over the prior distribution of p_{k+1} yields a time-homogeneous TPM with the (i, j)-th entry as

$$
\begin{align*}
& \mathbf{M}_{i, j}^{(s)}=\int_{\mathbf{P}} \mathbf{A}_{i, j}^{(s)}(k+1) g\left(p_{k+1}\right) d p_{k+1}= \tag{A4}\\
& \int_{\mathbf{P}} g\left(p_{k+1}\right) p_{k+1}^{\mathbf{d}\left(\mathbf{x}^{j}, \mathbf{f}_{s}\left(\mathbf{x}^{i}\right)\right)}\left(1-p_{k+1}\right)^{n-\mathbf{d}\left(\mathbf{x}^{j}, \mathbf{f}_{s}\left(\mathbf{x}^{i}\right)\right)} d p_{k+1}
\end{align*}
$$

Lemma 1 and (A4) result in (19).

Appendix 3:

Proof of lemma 3: From (5), the normal-gamma prior for $\theta_{j}(k)$ and $\lambda_{j}(k)$ is

$$
\begin{align*}
& p\left(\theta_{j}(k), \lambda_{j}(k) \mid x_{j}(k)\right)=p\left(\theta_{j}(k) \mid \lambda_{j}(k), x_{j}(k)\right) p\left(\lambda_{j}(k)\right) \\
& =\frac{1}{Z_{0}} \lambda_{j}(k)^{\alpha_{0}-\frac{1}{2}} \exp \left(-\frac{\lambda_{j}(k)}{2}\left[\kappa_{0}\left(\theta_{j}(k)-\mu_{j}(k)\right)^{2}+2 \beta_{0}\right]\right) \tag{A5}
\end{align*}
$$

where

$$
\begin{equation*}
Z_{0}=\left(\frac{2 \pi}{\kappa_{0}}\right)^{\frac{1}{2}} \frac{\Gamma\left(\alpha_{0}\right)}{\beta_{0}^{\alpha_{0}}} \tag{A6}
\end{equation*}
$$

The likelihood from (4) is

$$
p\left(y_{j}(k) \mid \theta_{j}(k), \lambda_{j}(k)\right)=\frac{1}{(2 \pi)^{\frac{1}{2}}} \lambda_{j}(k)^{\frac{1}{2}} \exp \left(-\frac{\lambda_{j}(k)}{2}\left(y_{j}(k)-\theta_{j}(k)\right)^{2}\right)
$$

Therefore, for the posterior,

$$
\begin{aligned}
& p\left(\theta_{j}(k), \lambda_{j}(k) \mid y_{j}(k), x_{j}(k)\right) \propto p\left(y_{j}(k) \mid \theta_{j}(k), \lambda_{j}(k)\right) p\left(\theta_{j}(k), \lambda_{j}(k) \mid x_{j}(k)\right) \\
& \propto \lambda_{j}(k)^{\alpha_{0}} \exp \left(-\frac{\lambda_{j}(k)}{2}\left[\kappa_{0}\left(\theta_{j}(k)-\mu_{j}(k)\right)^{2}+2 \beta_{0}+\left(y_{j}(k)-\theta_{j}(k)\right)^{2}\right]\right) \\
& \propto \lambda_{j}(k)^{\alpha_{1}-\frac{1}{2}} \exp \left(-\frac{\lambda_{j}(k)}{2}\left[\kappa_{1}\left(\theta_{j}(k)-\eta_{j}(k)\right)^{2}+2 \beta_{1}\right]\right)
\end{aligned}
$$

where κ_{1}, α_{1}, and β_{1} are given in 21, and $\eta_{j}(k)$ is defined by

$$
\begin{equation*}
\eta_{j}(k)=\frac{\kappa_{0} \mu_{j}(k)+y_{j}(k)}{\kappa_{0}+1} \tag{A7}
\end{equation*}
$$

Comparing A7) with A5), we see that the posterior also has the following normal-gamma density:

$$
\begin{align*}
& p\left(\theta_{j}(k), \lambda_{j}(k) \mid y_{j}(k), x_{j}(k)\right)= \tag{A8}\\
& \frac{1}{Z_{1}} \lambda_{j}(k)^{\alpha_{1}-\frac{1}{2}} \exp \left(-\frac{\lambda_{j}(k)}{2}\left[\kappa_{1}\left(\theta_{j}(k)-\eta_{j}(k)\right)^{2}+2 \beta_{1}\right]\right)
\end{align*}
$$

where

$$
\begin{equation*}
Z_{1}=\left(\frac{2 \pi}{\kappa_{1}}\right)^{\frac{1}{2}} \frac{\Gamma\left(\alpha_{1}\right)}{\beta_{1}^{\alpha_{1}}} \tag{A9}
\end{equation*}
$$

Since the posterior density in (A8) integrates to 1 ,

$$
\int_{\Omega} \int_{\boldsymbol{\Lambda}} \lambda_{j}(k)^{\alpha_{1}-\frac{1}{2}} \exp \left(-\frac{\lambda_{j}(k)}{2}\left[\kappa_{1}\left(\theta_{j}(k)-\eta_{j}(k)\right)^{2}+2 \beta_{1}\right]\right) d \theta_{j}(k) d \lambda_{j}(k)=Z_{1}
$$

Finally, K_{2} in (20) can be written as

$$
\begin{aligned}
K_{2} & =\frac{1}{(2 \pi)^{\frac{1}{2}}} \frac{1}{Z_{0}} \int_{\Omega} \int_{\Lambda} \lambda_{j}(k)^{\alpha_{1}-\frac{1}{2}} \exp \left(-\frac{\lambda_{j}(k)}{2}\left[\kappa_{1}\left(\theta_{j}(k)-\eta_{j}(k)\right)^{2}+2 \beta_{1}\right]\right) d \theta_{j}(k) d \lambda_{j}(k) \\
& =\frac{1}{(2 \pi)^{\frac{1}{2}}} \frac{Z_{1}}{Z_{0}}=\frac{1}{(2 \pi)^{\frac{1}{2}}}\left(\frac{\kappa_{0}}{\kappa_{1}}\right)^{\frac{1}{2}} \frac{\Gamma\left(\alpha_{1}\right)}{\Gamma\left(\alpha_{0}\right)} \frac{\beta_{0}^{\alpha_{0}}}{\beta_{1}^{\alpha_{1}}}
\end{aligned}
$$

which finishes the proof.

