
Page 1 of 2

Additional File 4: Runtime Evaluation
We ran our algorithm on our in-house cluster (Aeo-
lus[1]) using 32, 64, and 128 processors from 8 Intel
nodes (2.3 GHz) with 126GB shared memory on each
node. Using 128 processors and the input data set of
domain regions extracted by Pfam from the 90,000 se-
quences (data set #9) took about 90 minutes for our
algorithm to complete. However, this is when we used
an increment of one in the number of hash functions
used in each iteration. In practice, one does not need to
use all possible hash functions, but can rather use, for
example, increments of 20, which would decrease the
runtime to 25 minutes. Furthermore, one might choose
to start from a larger number of hash functions in the
first iteration rather than using 41 hash functions.
The main contributor to runtime in our algorithm is
the similarity graph generation step. The graph clus-
tering step uses Grappolo[2] which is a multi-threaded
implementation of the Louvain clustering method. We
performed runtime analysis for the similarity graph
generation using 32, 64, and 128 processors. Figure 1
shows the runtime required for each iteration of the
algorithm for d = 40. At each iteration two similarity
graphs should be generated, one for h hash functions
and the other for h − d hash functions. The drop in
hash function 81 is because starting from h = 81, the
similarity graph for h − d hash functions has already
been generated in earlier iterations and stored on disk.
We can see that using 64 and 128 processors, signifi-
cantly reduces the runtime compared to fewer number
of processors. The variability in runtime for various
numbers of hash functions can be partly due to the
structure of the graph but is mainly a result of our
cluster setup because various runs of the same algo-
rithm also gave very variable runtimes.
The speedup for the similarity graph generation step
is shown in Figure 2. To compute the speedup we have
first computed the total runtime of all iterations for 32,
64, and 128 processors. Then we have divided the to-
tal runtimes by the total runtime using 32 processors.
The speedup is sub-linear. However, a closer investi-
gation shows that as we increase the number of iter-
ations the speedup also improves. The dotted line in
Figure 2 shows the speedup when the total runtime is
computed only based on the iterations where h > 80.
This is because scalability of our algorithm is based
on the independence of hashing operations that can
be spread out on different processors. If the number of
hash functions used is not big enough, the communi-
cation time between processors will be the dominant
contributor to runtime. One way to avoid this problem

[1]https://aeolus.wsu.edu
[2]https://github.com/luhowardmark/GrappoloTK

is to use a fewer number of processors in the first itera-
tions of the algorithm and gradually increase this num-
ber as the algorithm proceeds to iterations with more
hash functions. Please note that, as stated earlier, one
can use increments of larger than one in between it-
erations, thus reducing the number of iterations with
a smaller number of hash functions and contributing
to the overall speedup. Note that at the time of the
composition of this paper, Grappolo did not provide
an API for calling the clustering functions from within
our program. Therefore we store the generated simi-
larity graph in each iteration of the algorithm on disk
and then call Grappolo giving the disk on file as in-
put. This can negatively affect the total runtime of
the process.



Page 2 of 2

Figure 1 Runtime of similarity graph generation, broken down by iteration, using varying number of processors.

30

50

70

90

110

40 60 80 100 120

#hash functions

ru
n

ti
m

e
 (

s
)

#processors:
32

64

128

Figure 2 Speedup for similarity graph generation. The dashed line represents linear speedup that we would ideally expect. Solid line
is the speedup resulted by considering all iterations of the algorithm for computing the total runtime, while the dotted line is the
speedup when we have used only iterations with h > 80 in computation of the total time.

1

2

3

4

32 64 128

number of processor

re
la

ti
ve

 s
p
e

e
d
u
p


