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S:1 More Details of GaKCo Algorithm
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Fig. S:1. Overview of the String (Spectrum) Kernel + SVM classifier.

S:1.1 Formal proof regarding Hamming Distance Property

Let hamming distance between strings x and y be d(x, y). Assuming both x and
y are composed of n characters, then hamming distance is formally defined as
[2]:

d(x, y) = Σn
i=0neq(xi, yi) (S:1–1)

where, if a and b are two characters,

neq(a, b) =

{
0, if a = b

1, otherwise
(S:1–2)

Property: Given, there are two strings x and y (composed of n characters
each) and characters from p positions are removed to obtain strings x′ and y′

with (n−p) characters. If the hamming distance between x′ and y′, d(x′, y′) = 0
then the hamming distance between original x and y, d(x, y) ≤ p.

Proof by example:
Let p = 2. We first re-write Eq. S:1–1 as:
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d(x, y) = Σn−2
i=0 neq(xi, yi) + neq(xn−1, yn−1) + neq(xn, yn) (S:1–3)

That is, we split the summation of neq(.) function as summation of neq(.) for
(n− 2) characters plus the sum of neq(.) for the (n− 1)th and last nth character
for x and y.

The term Σn−2
i=0 neq(xi, yi) represents the hamming distance d(x′, y′) for p = 2

positions removed. Therefore:

d(x, y) = d(x′, y′) + neq(xn−1, yn−1) + neq(xn, yn) (S:1–4)

Now if d(x′, y′) = 0 then

d(x, y) = neq(xn−1, yn−1) + neq(xn, yn) (S:1–5)

Based on Eq. S:1–2, d(x, y) = {(0 + 0), (0 + 1), (1 + 0), (1 + 1)} as these are
all the possible values of neq(.) function.

Therefore, d(x, y) ≤ 2 if d(x′, y′) = 0 where x′ and y′ are x and y (respec-
tively) with characters removed from p = 2 positions.

S:1.2 Justification of GaKCo’s Sort and Count Method

A core piece of the GaKCo’s kernel computation is counting the observed g-mers
in the strings for which the kernel value is being computed. The final imple-
mentation of our algorithm uses a sorting-based counting method, but we did
consider a hashing approach as well. There are straightforward time complexity
justifications for choosing sorting over hashing, which we explain in this section.

A hash table, treated as an associative array, could easily be used to count
instances of a g-mer. Given a g-mer, which consists of a g-length token and a
reference to the original string number, we may write a simple hash function
that executes in Θ(g) time (as we ought to consider every character in the string
for a well-distributed hash). Also, given that the total number of strings is N
of average length l, then the total number of g-mers is ∼ Nl. If we accept the
“typical-case” runtime of insertion into a hash table, which is Θ(1), then to count
every g-mer we must perform at least Θ(g · Nl) steps: for each of the total Nl
g-mers, we do g work to hash, insert, and update the associated value.

At first consideration, a sorting-based approach would seem to be strictly
worse, as any swapping sort would take Θ(g · (Nl) lg(Nl)) time. However, using
a non-swapping sort, in our case, gives us Θ(g ·Nl) time, which is the same as
we derived for the above hashing method. However, the sorting requires nearly
exactly g · Nl steps, while the hashing approach needs more steps to resolve
any possible collisions. To confirm our theoretical justification, we implemented
hashing approach and found that our sorting method was, indeed, faster than
hashing.
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S:2 Connecting to Previous Studies

String Kernels Aside from the spectrum kernel [14] and gapped k-mer kernel
[8], a few other notable string kernels include (but are not limited to): (1) (k,m)-
Mismatch Kernel. This kernel calculates the dot product of contiguous k-mer
counts with m mismatches allowed. The cumulative matching statistic idea was
first proposed by [11] for this kernel. 1 (2) Substring Kernel. It measures the
similarity between sequences based on common co-occurrence of exact matching
subpatterns (e.g., substrings) [24]. (3) Profile Kernel. This method uses the
notion of similarity based on a probabilistic model (e.g. profile) [10]. (4) Cluster
Kernel. The “sequence neighborhood” kernel or “cluster” kernel [6] is a semi-
supervised extension of the string kernel. It replaces every sequence with a set
of “similar” (neighboring) sequences and obtains a new representation. Then,
it averages over the representations of these contiguous sequences found in the
unlabeled data using a sequence similarity measure.

All string kernels calculate the feature representation φ(·) using the counts
of k-mer occurrence. Thus, in the following paragraph we will briefly discuss no-
table methods that count the occurrence of k-mers (mostly in the bioinformatics
literature).

k-mer counting methods k-mer (or in our case, g-mer) counting is the method
by which we determine the number of matching or unique k-mers (or g-mers) in
any text or pattern. Tools handling large text datasets need to filter out these
unique k-mers (or g-mers) to reduce the processing or counting time. GaKCo
uses a ‘sort and count’ method for calculating the number of matching g-mers
to compute the mismatch profile. This is a widely used method that lists all the
g-mers, sorts them lexicographically and counts all the consecutive matching
entries while skipping the unique g-mers. It has been used previously in tools
used for genome assembly [17], discovery of motifs (or most common fixed length
patterns) [20], and string kernel calculation [11].

BioSequence Classification with Deep Learning In recent years, deep
learning models have become popular in the bioinformatics community, owing
to their ability to extract meaningful representations from large labeled datasets
(e.g., with sample size ∼30,000 sequences). For example, Qi et al. [19] used a deep
multi-layer perceptron (MLP) architecture with multitask learning to perform
sequence-based protein structure prediction. Zhou et al. [26] created a genera-
tive stochastic network to predict secondary structure on the same data as used
by Qi et al. [19]. Recently, Lin et al. [15] outperformed all the state-of-the-art
works for protein property prediction task by using a deep convolutional neural
network architecture. Later, Alipanahi et al. [1] applied a convolutional neural
network model for predicting sequence specificity of DNA and RNA-binding pro-
teins as well as generating motifs, or consensus patterns, from the features that

1 Because [11] uses all possible k-mers built from the dictionary with m mismatches
as the feature space, the authors [11] need to precompute a complex weight matrix
to incorporate all possible k-mers with m mismatches.
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were learned by their model. Lanchantin et al. [13] proposed a deep convolu-
tional/highway MLP framework for the same task and demonstrated improved
performance. In the field of natural language processing, multiple works like [23]
have used deep learning models for document [25] or sentiment [22] classification.

S:3 Details about the Datasets

S:3.1 Benchmark Tasks of Sequence Classification

DNA and Protein Sequence Classification Studying DNA and Protein sequences
gives us deeper insight into the biological processes that can, in turn, help us
understand cell development and diseases. Two major tasks essential in the field
are Transcription Factor Binding Site (TFBS) Prediction and Remote Protein
Homology Prediction.

Transcription factors (TFs) are regulatory proteins that bind to functional
sites of DNA to control the regulation of genes. Each different TF binds to spe-
cific locations (or sites) on a genomic sequence to regulate cell machinery. Owing
to the development of chromatin immunoprecipitation and massively parallel
DNA sequencing (ChIP-seq) technologies [18], maps of genome-wide binding
sites are currently available for multiple TFs across different organisms. Because
ChIP-seq experiments are slow and expensive, computational methods to iden-
tify TFBSs accurately are essential for understanding cell regulation.

Remote Protein Homology Prediction, i.e. classification of protein sequences
according to their biological function or structure, plays a significant role in drug
development. Protein sequences that are a part of the same protein superfamily
are evolutionally related and functionally and structurally relevant to each other
[3]. Protein sequences with feature patterns showing high homology are classified
into the same superfamily. Once assigned a family, the properties of the protein
can be easily narrowed down by analyzing only the superfamily to which it
belongs.

Researchers have formulated both these tasks as classification tasks, where
knowing a DNA or protein sequence, we would like to classify it as a binding
site or non-binding site for TF prediction and belonging or not belonging to a
protein family for homology prediction respectively.

Text Classification Text classification incorporates multiple tasks like assigning
subject categories or topics to documents, spam detection, language detection,
sentiment analysis, etc. Generally, given a document and a fixed number of
classes, the classification model has to predict the class that is most relevant to
that document. Several recent studies have discovered that character-based rep-
resentation provides straightforward and powerful models for relation extraction
[21], sentiment classification [25], and transition based parsing [4]. Lodhi et. al.
[16] first used string kernels with character level features for text categorization.
However, their kernel computation used dynamic programming which was com-
putationally intensive. Over recent years, more efficient string kernel methods
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have been devised [14, 10–12, 8]. Therefore, we use simple character-based text
input for document and sentiment classification tasks.

S:3.2 19 Datasets used in Evaluations

ENCODE DNA Sequences: Transcription factors (TFs) are regulatory proteins
that bind to functional sites of DNA to control the regulation of genes. Each dif-
ferent TF binds to specific locations (or sites) on a genomic sequence to regulate
cell machinery. Maps of genome-wide binding sites are currently available for
multiple TFs for human genome via the ENCODE [7] database. These “maps”
mark the positions of the TF binding sites. We select 100 basepair sequences over-
lapping the binding sites as positive sequences and randomly select non-binding
sequences from the human genome as negative sequences. We perform this selec-
tion for five different transcription factors (CTCF, EP300, JUND, RAD21, and
SIN3A) from the K562 (leukemia) cell type, resulting in five different prediction
tasks. For these tasks, we use a dictionary size of 5 (Σ = 5); four nucleotide sym-
bols — A, T, C, G — and a “unknown” character ‘N’ for nucleotides that were
not read by the sequencing machines. Therefore, the dictionary is {A,T,C,G,N}.

SCOP Protein Sequences: Remote Protein Homology Prediction, i.e. classi-
fication of protein sequences according to their biological function or structure,
plays a significant role in drug development. Protein sequences that are a part
of the same protein superfamily are evolutionally related and functionally and
structurally relevant to each other [3]. The SCOP domain database consists of
protein domains, no two of which have 90% or more residual identity [9]. It is hi-
erarchically divided into folds, superfamilies, and finally families. We use 12 sets
of samples (listed in Supplementary Table) and select positive test sequences (for
each sample) from 1 protein family of a particular superfamily. We obtain the
positive training sequences from remaining families in that superfamily. We se-
lect negative training and test sequences from non-overlapping folds outside the
positive sequence fold. We use the dictionary size of 20 (Σ = 20) as there are 20
amino acid symbols that make up a protein sequence. Therefore the dictionary
is {A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y}.

WebKB and Sentiment Classification Datasets: Text classification incorpo-
rates multiple tasks like assigning subject categories or topics to documents,
spam detection, language detection, sentiment analysis, etc. Several recent stud-
ies have discovered that character-based representation provides straightforward
and powerful models for relation extraction [21], sentiment classification [25],
and transition based parsing [4]. We downloaded the processed WebKB datasets
(removed stop/short words, stemming, etc.) from [5]. This task is a multi-class
classification task of webpages with four classes: project, course, faculty, and stu-
dent. For the sentiment analysis experiments, we used the Stanford sentiment
treebank dataset [22]. This dataset provides a score for each sentence between
0 and 1 with [0, 0.4] being negative sentiment and [0.6, 1.0] being positive. We
combined the validation set in the original treebank dataset with the training
set. We use the dictionary size of 36 (Σ = 36) since we use character-based
input. The dictionary includes all the alphabets [A-Z] and numbers [0-9].
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S:4 Empirical Performance of GaKCo versus Neural
Networks

Recently, Deep Neural Networks (NNs) have provided state-of-the-art perfor-
mances for various sequence classification tasks like analyzing DNA [1, 13], pro-
teins [19, 26], and natural language [25, 22] sequences. Despite their superior
performance in accuracy and speed (e.g. through GPUs and mini-batches) such
NN systems usually require a significant number of training samples. This re-
quirement can be unfeasible for many datasets, especially in the medical research
domains. Here, the number of training sequences per experiment can be as low
as tens or hundreds due to cost and time constraints. We compare GaKCo’s
empirical performance with a state-of-the-art deep convolutional neural network
(CNN) model [13]. On datasets with few training samples, GaKCo achieves an
average accuracy improvement of 20% over the CNN model (see Fig. S:2) mak-
ing it an appealing tool when the training samples are scarce. Besides, GaKCo
includes only two hyperparameters (g and k) for tuning 2. This feature is de-
sirable when comparing with NN systems for which figuring out the optimal
network model and hyperparameters can be a daunting task.

More concretely, we compare GaKCo’s empirical performance with a state-
of-the-art CNN model from [13]. Fig. S:2 (b) shows the differences in AUC
Scores (or micro-averaged F1-score for Web-KB) of GaKCo and CNN [13]. For
16/19 tasks, GaKCo outperforms the CNN model with an average of ∼ 20%
accuracy. This result can be explained by the fact that CNNs trained with a
small number of samples (1000-10,000 sequences) often exhibit unstable behavior
in performance.

For three datasets - SIN3A (DNA), 1.1 (protein), and Web-KB (text), we
observe that the empirical performance of GaKCo and CNN is similar. Therefore,
we further explore these datasets in Fig. S:2(c). Here, we plot the AUC scores
or micro-averaged F1 scores (Web-KB) for varying number of training sample
(N = {100, 250, 500 and 750} sequences). We randomly select these samples
from the training set and use the original test set of the respective datasets. The
results are averaged over three runs of the experiment. Our aim is to find the
threshold (number of training samples) for which CNN gives a lower performance
to GaKCo for these three datasets. Fig. S:2(c) presents the averaged AUC scores
or micro-averaged F1 score (Web-KB). We see that the threshold for which CNN
gives a lower performance to GaKCo is 750 sequences in the training set. We
also observe that the variance in performance is high for NN (represented by
error bars) across the three runs.

2 There is also one C parameter for tuning SVM training (while using linear kernel)
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Fig. S:2. (a) Kernel calculation time (X-axis) and the memory usage (Y-axis) (lower
is better) for both GaKCo and gkm-SVM for all 19 classification tasks. For 17/19
tasks, GaKCo’s memory usage is lesser or comparable to gkm-SVM with lower kernel
calculation time. Therefore, it is both time and memory efficient. (b) Differences in
AUC Scores (or micro-averaged F1-score for Web-KB) between GaKCo and state-of-
the-art CNN model [13]. For 16/19 tasks, GaKCo outperforms CNN with an average
of ∼ 20% accuracy. (c)Averaged AUC scores, across 3 runs, for SIN3A (DNA) and 1.1
(protein), and micro-averaged F1 scores for Web-KB (text) while varying number of
sequences (N = {100, 250, 500, and 750}). For a threshold value of 750 sequences in
the training set, CNN achieves lower empirical performance to GaKCo.

S:5 Other Experiments

S:5.1 Time profiles for different functions of GaKCo

Table S:1 shows the GaKCo average time profiled for sorting vs. count and
update function when calculating cumulative mismatch profile for EP300 DNA
dataset (m = 7).

Table S:1. The GaKCo sorting time vs Count and Update time averaged over all
iterations for EP300 DNA dataset (g=10 and k=3).

Algorithmic Step Average Time (in seconds)

Sort 0.059

Count and Update 2.26
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S:5.2 AUC scores for the best performing parameters

Different handling of dictionaries Table S:2 summarizes the AUC scores for
all datasets. The current gkm-SVM implementation [8] while reading the input
ignores an unknown character. GaKCo maps it to another ‘UNK’ character. For
example, the dataset may contain an extra ‘X’ character, which is not a part of
the dictionary. To ensure consistent empirical performance between GaKCo and
gkm-SVM, the user will have to add the extra ‘X’ character to the dictionary of
gkm-SVM.

Table S:2. Summary of GaKCo-SVM, gkm-SVM and CNN-AUC scores for all
datasets. For Web-KB we report the micro-averaged F1-Score since it is a multi clas-
sification task with four classes: student, faculty, project and course.

Prediction Task Sample properties Best Parameters AUC

Datasets N Σ Max(l) g k c GaKCO-AUC gkm-SVM-AUC NN-AUC

1.1 3574

20 905

7 5 0.01 0.7453 0.7448 0.7484
1.34 3312 10 1 0.1 0.9903 0.9903 0.9858
2.19 2560 7 1 100 0.8951 0.8951 0.822
2.31 3500 10 7 10 0.9484 0.9497 0.5317
2.1 7062 10 3 10 0.979 0.9895 0.7970
2.34 2738 7 6 0.01 0.8664 0.8660 0.7477
2.41 2646 10 6 0.01 0.7925 0.7925 0.6484
2.8 2480 10 1 10 0.6367 0.6367 0.6801
3.19 3341 8 1 0.1 0.9326 0.9326 0.7050
3.25 3637 10 8 1 0.7967 0.7962 0.5848
3.33 2918 10 5 0.01 0.9018 0.9018 0.8843
3.50 2549 10 7 0.01 0.7768 0.7772 0.8265

CTCF

4000 5 100

10 5 1 0.902 0.902 0.7834
EP300 10 5 1 0.942 0.942 0.6138
JUND 10 7 1 0.91 0.91 0.8317
RAD21 10 5 1 0.901 0.901 0.7937
SIN3A 10 7 1 0.834 0.834 0.8309

Sentiment 9217 36 260 8 4 1 0.8154 0.81 0.5303

WebKB (F1-score) 4163 36 14218 8 5 1 0.9153 0.9116 0.9147

S:5.3 Running Time Results of GaKCo with one level of
parallelization versus GaKCo with two levels of parallelization

As explained earlier, our GaKCo implementation utilizes the parallelizability of
GaKCo over iterations over m mismatches. It is possible to parallelize GaKCo
on another level as the calculation of the cumulative mismatch profile Ci is also
independent for the

(
g
i

)
iterations i.e. the Step 4 in Fig 2 (Main Text) can be done

independently over all
(
g
i

)
positions. We also performed similar experiments for a

4 * indicates memory issues



GaKCo-SVM 9

Table S:3. GaKCo-Parallel (Single Level Parallelization) vs GaKCo-Parallel+ (two
levels of parallelization) for WebKB dataset

Levels of Parallelization Time (seconds) Memory(GB)

GaKCo-Parallel 751 1.63

GaKCo-Parallel+ 58 24.44

Table S:4. GaKCo-Parallel(Single Level Parallelization) vs GaKCo-Parallel+ (two
levels of parallelization). The time is in seconds4

Dataset GaKCo-Parallel GaKCo-Parallel+

1.1 31 13

1.34 266 63

2.19 79 28

2.31 120 17

2.1 974 *

2.34 10 7

2.41 90 19

2.8 184 43

3.19 175 35

3.25 54 15

3.33 151 32

3.50 58 10

WebKB 751 58

Sentiment 522 137

two-level parallelization implementation of GaKCo. As summarized in Table S:3
and Table S:4, the kernel calculation time decreases manifold, but this speed-up
comes at the cost of increased memory usage. If memory is not a constraint,
our GaKCo-Parallel+ implementation can be used to further speed up kernel
calculation.

S:5.4 GaKCo is both time and memory efficient:

Fig. S:3 shows points for the kernel calculation time (X-axis) versus the memory
usage (Y-axis) for both GaKCo and gkm-SVM for all 19 classification tasks.
We observe that most of these points representing GaKCo lie in the lower-
left quadrant indicating that it is both time and memory efficient. For 17/19
tasks, its memory usage is lesser or comparable to gkm-SVM with faster kernel
calculation time. Therefore, GaKCo’s time improvement over the baseline is
achieved with almost no added memory cost.
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lation time. Therefore, it is both time and memory efficient.
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