Springer Nature
Browse

Variation in species assemblages due to micro-topography and flow regime govern vegetation carbon stock in seasonal floodplain wetlands

Posted on 2019-12-06 - 04:48
Abstract Hypothesis Variation in species assemblages due to micro-topographic features and flow regime determine vegetation carbon stock in floodplain wetlands. Material and method We tested this hypothesis in Chatla—a tropical floodplain wetland located in northeast India. Five sampling stations characterized by contrasting micro-topographic and flow parameters were selected in the wetland for study. Species composition, assemblage pattern, and vegetation carbon stock were studied in these stations during three flood phases, i.e., early, middle, and late flood phases following standard methods. Univariate and multivariate statistics were used to determine the relationship between the selected environmental parameters, plant species assemblages, and vegetation carbon stock of the wetland. Results Thirty-one species of herbs and five species of shrubs were recorded from the five stations in Chatla floodplain wetland. Flow regime characterized by water flow velocity and discharge showed substantial variations across the stations. These parameters in turn are related to variations in the micro-topographic characteristics namely depth, width, and cross-sectional area of the stations. Plant species composition and abundance differed significantly with respect to micro-topography and flow regime as revealed by the cluster diagram. The canonical correspondence analysis revealed strong association of plant species assemblages with the micro-topography and flow regime within the wetland. Multiple regression analysis revealed a significant positive relationship of the vegetation carbon stock with the water discharge. Conclusions Spatial variation in plant species diversity because of micro-topography and flow regime determines the vegetation carbon stock in floodplain wetlands. Modification of these parameters by anthropogenic activities such as mining and quarrying may potentially influence the carbon stocking potential of seasonal floodplain wetlands. Therefore, appropriate measures should be taken to maintain the integrity of the natural topographic features of such wetlands.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?