Use of a Small Animal Radiation Research Platform (SARRP) facilitates analysis of systemic versus targeted radiation effects in the mouse ovary
Posted on 2018-08-30 - 05:00
Abstract Background Radiation exposure is known to cause accelerated aging and damage to the ovary, but the contribution of indirect versus direct effects is not well understood. We used the Small Animal Radiation Research Platform (SARRP) (Xstrahl) to deliver radiation to precise fields equivalent to clinical practice, allowing us to investigate systemic versus targeted damage in a structure as small as the mouse ovary. The X-ray dose was kept constant at 1Â Gy, but the field varied. Mice either received total body irradiation (TBI), radiation targeted to both ovaries (T2), or radiation targeted to one ovary (left) while the contralateral ovary (right) was spared (T1). Sham mice, handled similarly to the other cohorts but not exposed to radiation, served as controls. Two weeks post-exposure, ovaries were harvested and analyzed histologically to identify and count follicles within each ovary. Results Radiation significantly reduced primordial follicles in the TBI and T2 cohorts compared to the Sham cohort. There were no significant differences between these two irradiated groups. These findings suggest that at 1Â Gy, the extent of damage to the ovary caused by radiation is similar despite the different delivery methods. When investigating the T1 cohort, targeted ovaries showed a significant decrease in primordial and growing follicles compared to non-targeted contralateral ovaries. Conclusions These findings demonstrate that the SARRP is an effective strategy for delivering precise ionizing radiation to small organs such as mouse ovaries. Such tools will facilitate identifying the relative risks to ovarian function associated with different radiation fields as well as screening the efficacy of emerging fertoprotective agents.
CITE THIS COLLECTION
DataCiteDataCite
3 Biotech3 Biotech
3D Printing in Medicine3D Printing in Medicine
3D Research3D Research
3D-Printed Materials and Systems3D-Printed Materials and Systems
4OR4OR
AAPG BulletinAAPG Bulletin
AAPS OpenAAPS Open
AAPS PharmSciTechAAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität HamburgAbhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)ABI Technik (German)
Academic MedicineAcademic Medicine
Academic PediatricsAcademic Pediatrics
Academic PsychiatryAcademic Psychiatry
Academic QuestionsAcademic Questions
Academy of Management DiscoveriesAcademy of Management Discoveries
Academy of Management JournalAcademy of Management Journal
Academy of Management Learning and EducationAcademy of Management Learning and Education
Academy of Management PerspectivesAcademy of Management Perspectives
Academy of Management ProceedingsAcademy of Management Proceedings
Academy of Management ReviewAcademy of Management Review
Grover, Allison; Kimler, Bruce; Duncan, Francesca (2018). Use of a Small Animal Radiation Research Platform (SARRP) facilitates analysis of systemic versus targeted radiation effects in the mouse ovary. figshare. Collection. https://doi.org/10.6084/m9.figshare.c.4217291.v1