Springer Nature
Browse

Transcriptomic analysis reveals the mechanism underlying the anthocyanin changes in Fragaria nilgerrensis Schlecht. and its interspecific hybrids

Posted on 2023-07-12 - 03:19
Abstract Background Fragaria nilgerrensis (FN) provides a rich source of genetic variations for strawberry germplasm innovation. The color of strawberry fruits is a key factor affecting consumer preferences. However, the genetic basis of the fruit color formation in F. nilgerrensis and its interspecific hybrids has rarely been researched. Results In this study, the fruit transcriptomes and flavonoid contents of FN (white skin; control) and its interspecific hybrids BF1 and BF2 (pale red skin) were compared. A total of 31 flavonoids were identified. Notably, two pelargonidin derivatives (pelargonidin-3-O-glucoside and pelargonidin-3-O-rutinoside) were revealed as potential key pigments for the coloration of BF1 and BF2 fruits. Additionally, dihydroflavonol 4-reductase (DFR) (LOC101293459 and LOC101293749) and anthocyanidin 3-O-glucosyltransferase (BZ1) (LOC101300000), which are crucial structural genes in the anthocyanidin biosynthetic pathway, had significantly up-regulated expression levels in the two FN interspecific hybrids. Moreover, most of the genes encoding transcription factors (e.g., MYB, WRKY, TCP, bHLH, AP2, and WD40) related to anthocyanin accumulation were differentially expressed. We also identified two DFR genes (LOC101293749 and LOC101293459) that were significantly correlated with members in bHLH, MYB, WD40, AP2, and bZIP families. Two chalcone synthase (CHS) (LOC101298162 and LOC101298456) and a BZ1 gene (LOC101300000) were highly correlated with members in bHLH, WD40 and AP2 families. Conclusions Pelargonidin-3-O-glucoside and pelargonidin-3-O-rutinoside may be the key pigments contributing to the formation of pale red fruit skin. DFR and BZ1 structural genes and some bHLH, MYB, WD40, AP2, and bZIP TF family members enhance the accumulation of two pelargonidin derivatives. This study provides important insights into the regulation of anthocyanidin biosynthesis in FN and its interspecific hybrids. The presented data may be relevant for improving strawberry fruit coloration via genetic engineering.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?