Springer Nature
Browse

Toxicity of Gold Nanoparticles in Mice due to Nanoparticle/Drug Interaction Induces Acute Kidney Damage

Posted on 2020-07-03 - 04:33
Abstract Nanomaterials are innovative materials with many useful properties, but there is concern regarding their many unknown effects on living organisms. Gold nanoparticles are widely used as industrial materials because of their excellent properties. The potential biological hazards of gold nanoparticles are unknown, and thus, here we examined the in vivo effects of gold nanoparticles 10, 50, and 100 nm in diameter (GnP10, GnP50, and GnP100, respectively) and their interactions with drugs in mice to clarify their safety in mammals. Cisplatin, paraquat, and 5-aminosalicylic acid cause side-effect damage to the liver and kidney in mice. No hepatotoxicity or nephrotoxicity was observed when any of the gold nanoparticles alone were administered via the tail vein. In contrast, co-administration of GnP-10 with cisplatin, paraquat, or 5-aminosalicylic acid caused side-effect damage to the kidney. This suggests that gold nanoparticles with a particle size of 10 nm are potentially nephrotoxic due to their interaction with drugs.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?