Springer Nature
Browse

The transcriptional coactivator and histone acetyltransferase CBP regulates neural precursor cell development and migration

Posted on 2019-12-06 - 04:45
Abstract CREB (cyclic AMP response element binding protein) binding protein (CBP, CREBBP) is a ubiquitously expressed transcription coactivator with intrinsic histone acetyltransferase (KAT) activity. Germline mutations within the CBP gene are known to cause Rubinstein-Taybi syndrome (RSTS), a developmental disorder characterized by intellectual disability, specific facial features and physical anomalies. Here, we investigate mechanisms of CBP function during brain development in order to elucidate morphological and functional mechanisms underlying the development of RSTS. Due to the embryonic lethality of conventional CBP knockout mice, we employed a tissue specific knockout mouse model (hGFAP-cre::CBPFl/Fl, mutant mouse) to achieve a homozygous deletion of CBP in neural precursor cells of the central nervous system. Our findings suggest that CBP plays a central role in brain size regulation, correct neural cell differentiation and neural precursor cell migration. We provide evidence that CBP is both important for stem cell viability within the ventricular germinal zone during embryonic development and for unhindered establishment of adult neurogenesis. Prominent histological findings in adult animals include a significantly smaller hippocampus with fewer neural stem cells. In the subventricular zone, we observe large cell aggregations at the beginning of the rostral migratory stream due to a migration deficit caused by impaired attraction from the CBP-deficient olfactory bulb. The cerebral cortex of mutant mice is characterized by a shorter dendrite length, a diminished spine number, and a relatively decreased number of mature spines as well as a reduced number of synapses. In conclusion, we provide evidence that CBP is important for neurogenesis, shaping neuronal morphology, neural connectivity and that it is involved in neuronal cell migration. These findings may help to understand the molecular basis of intellectual disability in RSTS patients and may be employed to establish treatment options to improve patients’ quality of life.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Acta Neuropathologica Communications

AUTHORS (19)

Melanie Schoof
Michael Launspach
Dörthe Holdhof
Lynhda Nguyen
Verena Engel
Severin Filser
Finn Peters
Jana Immenschuh
Malte Hellwig
Judith Niesen
Volker Mall
Birgit Ertl-Wagner
Christian Hagel
Michael Spohn
Beat Lutz
Jan Sedlacik
Daniela Indenbirken
Daniel Merk
Ulrich Schüller
need help?