Springer Nature
Browse

The long noncoding RNA H19 promotes tamoxifen resistance in breast cancer via autophagy

Posted on 2019-07-25 - 06:26
Abstract Background Tamoxifen resistance remains a clinical challenge for hormone receptor-positive breast cancer. Recently, dysregulations in autophagy have been suggested as a potential mechanism for tamoxifen resistance. Although the long noncoding RNA H19 is involved in various stages of tumorigenesis, its role in tamoxifen resistance remains unknown. Here, we assessed the role of H19 in the development of tamoxifen-resistant breast cancer. Methods Quantitative real-time PCR analyzed expression of H19 in tamoxifen-resistant breast cancer tissues. Knockdown of H19 was used to assess the sensitivity to tamoxifen in vitro and in vivo. Both knockdown and overexpression of H19 were used to analyze the status of autophagy. Real-time quantitative methylation-specific polymerase chain reaction, chromatin immunoprecipitation, immunofluorescence, and Western blot were used to explore the tamoxifen resistance mechanism of H19. Results In this study, we observed that the expression of H19 was substantially upregulated in tamoxifen-resistant breast cancer cell line and tumor tissues, and knockdown of H19 enhanced the sensitivity to tamoxifen both in vitro and in vivo. Furthermore, knockdown of H19 significantly inhibited autophagy in MCF7 tamoxifen-resistant (MCF7/TAMR) cells. Conversely, overexpression of H19 promoted autophagy. Interestingly, overexpression of H19 in MCF7 tamoxifen-sensitive cells could recapitulate tamoxifen resistance. Moreover, an increase in methylation in the promoter region of Beclin1 was observed in MCF7/TAMR-shH19 cells. In the double knockdown groups, both shH19+shSAHH and shH19+shDNMT3B rescued the Beclin1 promoter region methylation levels and reactivated autophagy functions. A chromatin immunoprecipitation assay further validated that DNMT3B binds to the Beclin1 promoter region and the knockdown of H19 increases this binding. Conclusions Our findings demonstrate that H19 induces autophagy activation via the H19/SAHH/DNMT3B axis, which could contribute to tamoxifen resistance in breast cancer.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Journal of Hematology & Oncology

AUTHORS (12)

Ji Wang
Shuduo Xie
Jingjing Yang
Hanchu Xiong
Yunlu Jia
Yulu Zhou
Yongxia Chen
Xiaogang Ying
Cong Chen
Chenyang Ye
Linbo Wang
Jichun Zhou
need help?