Springer Nature
Browse

Statistical measures of motor, sensory and cognitive performance across repeated robot-based testing

Posted on 2020-07-03 - 04:29
Abstract Background Traditional clinical assessments are used extensively in neurology; however, they can be coarse, which can also make them insensitive to change. Kinarm is a robotic assessment system that has been used for precise assessment of individuals with neurological impairments. However, this precision also leads to the challenge of identifying whether a given change in performance reflects a significant change in an individual’s ability or is simply natural variation. Our objective here is to derive confidence intervals and thresholds of significant change for Kinarm Standard Tests™ (KST). Methods We assessed participants twice within 15 days on all tasks presently available in KST. We determined the 5–95% confidence intervals for each task parameter, and derived thresholds for significant change. We tested for learning effects and corrected for the false discovery rate (FDR) to identify task parameters with significant learning effects. Finally, we calculated intraclass correlation of type ICC [1, 2] (ICC-C) to quantify consistency across assessments. Results We recruited an average of 56 participants per task. Confidence intervals for Z-Task Scores ranged between 0.61 and 1.55, and the threshold for significant change ranged between 0.87 and 2.19. We determined that 4/11 tasks displayed learning effects that were significant after FDR correction; these 4 tasks primarily tested cognition or cognitive-motor integration. ICC-C values for Z-Task Scores ranged from 0.26 to 0.76. Conclusions The present results provide statistical bounds on individual performance for KST as well as significant changes across repeated testing. Most measures of performance had good inter-rater reliability. Tasks with a higher cognitive burden seemed to be more susceptible to learning effects, which should be taken into account when interpreting longitudinal assessments of these tasks.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?