Springer Nature
Browse

Robustness of the long-term nonlinear evolution of global sea surface temperature trend

Posted on 2022-07-11 - 07:43
Abstract The multi-scale variability of global sea surface temperature (GSST), which is often dominated by secular trends, significantly impacts global and regional climate change. Previous studies were mainly carried out under linear assumptions. Even if the nonlinear evolution patterns have been discussed based on annual-mean data, the conclusions are still insufficient due to several factors. Here, based on the Ensemble Empirical Mode Decomposition (EEMD) method, the robustness of GSST trends tied to the sampling frequency and time interval selection is further explored. The main features derived from the annual-mean data are maintained. However, monthly and seasonal-mean data both mute the cooling in the equatorial central Pacific and the Southern Ocean in the Pacific sector, meanwhile intensify and expand the warming over the North Pacific. The results also highlight that early data cause a minimal effect on secular trends except for the portion near the start point of the interval due to the local temporal nature of EEMD. Overall, the long-term GSST trends extracted by EEMD have good robustness. Our research also clarifies that quadratic fitting cannot reveal all the meaningful evolution patterns, even as a nonlinear solution.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?