Springer Nature
Browse

Quantification and reliability of [11C]VC - 002 binding to muscarinic acetylcholine receptors in the human lung — a test-retest PET study in control subjects

Posted on 2020-06-04 - 03:59
Abstract Background The radioligand [11C]VC-002 was introduced in a small initial study long ago for imaging of muscarinic acetylcholine receptors (mAChRs) in human lungs using positron emission tomography (PET). The objectives of the present study in control subjects were to advance the methodology for quantification of [11C]VC-002 binding in lung and to examine the reliability using a test-retest paradigm. This work constituted a self-standing preparatory step in a larger clinical trial aiming at estimating mAChR occupancy in the human lungs following inhalation of mAChR antagonists. Methods PET measurements using [11C]VC-002 and the GE Discovery 710 PET/CT system were performed in seven control subjects at two separate occasions, 2–19 days apart. One subject discontinued the study after the first measurement. Radioligand binding to mAChRs in lung was quantified using an image-derived arterial input function. The total distribution volume (VT) values were obtained on a regional and voxel-by-voxel basis. Kinetic one-tissue and two-tissue compartment models (1TCM, 2TCM), analysis based on linearization of the compartment models (multilinear Logan) and image analysis by data-driven estimation of parametric images based on compartmental theory (DEPICT) were applied. The test-retest repeatability of VT estimates was evaluated by absolute variability (VAR) and intraclass correlation coefficients (ICCs). Results The 1TCM was the statistically preferred model for description of [11C]VC-002 binding in the lungs. Low VAR (< 10%) across analysis methods indicated good reliability of the PET measurements. The VT estimates were stable after 60 min. Conclusions The kinetic behaviour and good repeatability of [11C]VC-002 as well as the novel lung image analysis methodology support its application in applied studies on drug-induced mAChR receptor occupancy and the pathophysiology of pulmonary disorders. Trial registration ClinicalTrials.gov identifier: NCT03097380, registered: 31 March 2017.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

EJNMMI Research

AUTHORS (18)

Zsolt Cselényi
Aurelija Jucaite
Cecilia Kristensson
Per Stenkrona
Pär Ewing
Andrea Varrone
Peter Johnström
Magnus Schou
Ana Vazquez-Romero
Mohammad Mahdi Moein
Martin Bolin
Jonathan Siikanen
Pär Grybäck
Bengt Larsson
Christer Halldin
Ken Grime
Ulf G. Eriksson
Lars Farde
need help?