Springer Nature
Browse

Privacy-protecting estimation of adjusted risk ratios using modified Poisson regression in multi-center studies

Posted on 2019-12-06 - 04:43
Abstract Background Multi-center studies can generate robust and generalizable evidence, but privacy considerations and legal restrictions often make it challenging or impossible to pool individual-level data across data-contributing sites. With binary outcomes, privacy-protecting distributed algorithms to conduct logistic regression analyses have been developed. However, the risk ratio often provides a more transparent interpretation of the exposure-outcome association than the odds ratio. Modified Poisson regression has been proposed to directly estimate adjusted risk ratios and produce confidence intervals with the correct nominal coverage when individual-level data are available. There are currently no distributed regression algorithms to estimate adjusted risk ratios while avoiding pooling of individual-level data in multi-center studies. Methods By leveraging the Newton-Raphson procedure, we adapted the modified Poisson regression method to estimate multivariable-adjusted risk ratios using only summary-level information in multi-center studies. We developed and tested the proposed method using both simulated and real-world data examples. We compared its results with the results from the corresponding pooled individual-level data analysis. Results Our proposed method produced the same adjusted risk ratio estimates and standard errors as the corresponding pooled individual-level data analysis without pooling individual-level data across data-contributing sites. Conclusions We developed and validated a distributed modified Poisson regression algorithm for valid and privacy-protecting estimation of adjusted risk ratios and confidence intervals in multi-center studies. This method allows computation of a more interpretable measure of association for binary outcomes, along with valid construction of confidence intervals, without sharing of individual-level data.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?