Springer Nature
Browse

Prior information guided auto-segmentation of clinical target volume of tumor bed in postoperative breast cancer radiotherapy

Posted on 2023-10-16 - 03:20
Abstract Background Accurate delineation of clinical target volume of tumor bed (CTV-TB) is important but it is also challenging due to surgical effects and soft tissue contrast. Recently a few auto-segmentation methods were developed to improve the process. However, those methods had comparatively low segmentation accuracy. In this study the prior information was introduced to aid auto-segmentation of CTV-TB based on a deep-learning model. Methods To aid the delineation of CTV-TB, the tumor contour on preoperative CT was transformed onto postoperative CT via deformable image registration. Both original and transformed tumor contours were used for prior information in training an auto-segmentation model. Then, the CTV-TB contour on postoperative CT was predicted by the model. 110 pairs of preoperative and postoperative CT images were used with a 5-fold cross-validation strategy. The predicted contour was compared with the clinically approved contour for accuracy evaluation using dice similarity coefficient (DSC) and Hausdorff distance. Results The average DSC of the deep-learning model with prior information was improved than the one without prior information (0.808 vs. 0.734, P < 0.05). The average DSC of the deep-learning model with prior information was higher than that of the traditional method (0.808 vs. 0.622, P < 0.05). Conclusions The introduction of prior information in deep-learning model can improve segmentation accuracy of CTV-TB. The proposed method provided an effective way to automatically delineate CTV-TB in postoperative breast cancer radiotherapy.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?