Springer Nature
Browse

Phytochemical screening, metabolite profiling and enhanced antimicrobial activities of microalgal crude extracts in co-application with silver nanoparticle

Posted on 2020-07-16 - 04:38
Abstract Background Microalgae is one of the major sources of natural compounds with antimicrobial activity. The metabolite profiling of the extracts could identify the bioactive compounds based on methanol (MET), ethanol (ETH), chloroform (CHL), hexane (HEX) and water (W) solvent systems. The microalgal crude extracts in co-application with silver nanoparticles (AgNPs) had enhanced antimicrobial activity with potential to overcome the global problem of microbial antibiotic resistance. Results Chlorella sp. exhibited the highest lipid, N. oculata the highest total saturated fatty acids (TSFA), and T. suecica the highest mono-unsaturated (MUFA) and poly-unsaturated fatty acids (PUFA). The highest carbohydrate, protein and total phenolics contents (TPCs) were attained by N. oculata. The highest total flavonoids contents (TFCs), and chlorophyll a and b were in T. suecica, while comparable level of carotenoids were found in all species. For high-performance thin-layer chromatography (HPTLC) analyses, the eicosapentaenoic acid (EPA) with high peaks were detected in T. suecica-HEX and N. oculata-CHL; and β-carotene in Chlorella sp.-ETH. The gas chromatography–mass spectrometry (GC–MS) analyses showed high 13-docosenamide (Z)- in T. suecica-HEX; phytol in N. oculata-HEX; and neophytadiene in Chlorella sp.-ETH. The AgNPs–MCEs–MET and HEX at the 1.5:1 ratios exhibited strong activities against Bacillus subtilis, Streptococcus uberis, and Salmonella sp.; and the AgNPs–T. suecica-HEX and MET and AgNPs–Chlorella sp.-HEX at the 1.5:1 ratios exhibited activities against Klebsiella pneumoniae. Conclusion Different bioactive components were detected in the MCEs based on the HPTLC and GC–MS analyses. Significant antimicrobial activities against the pathogenic microbes were demonstrated by the synergistic effects of the MCEs in co-application with the AgNPs. This could be beneficial in the fight against sensitive and multidrug-resistant bacteria.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Bioresources and Bioprocessing

AUTHORS (6)

Hanaa Ali Hussein
Desy Fitrya Syamsumir
Siti Aisha Mohd Radzi
Julius Yong Fu Siong
Nor Atikah Mohamed Zin
Mohd Azmuddin Abdullah

CATEGORIES

need help?