Springer Nature
Browse

PhyteByte: identification of foods containing compounds with specific pharmacological properties

Posted on 2020-06-11 - 03:42
Abstract Background Phytochemicals and other molecules in foods elicit positive health benefits, often by poorly established or unknown mechanisms. While there is a wealth of data on the biological and biophysical properties of drugs and therapeutic compounds, there is a notable lack of similar data for compounds commonly present in food. Computational methods for high-throughput identification of food compounds with specific biological effects, especially when accompanied by relevant food composition data, could enable more effective and more personalized dietary planning. We have created a machine learning-based tool (PhyteByte) to leverage existing pharmacological data to predict bioactivity across a comprehensive molecular database of foods and food compounds. Results PhyteByte uses a cheminformatic approach to structure-based activity prediction and applies it to uncover the putative bioactivity of food compounds. The tool takes an input protein target and develops a random forest classifier to predict the effect of an input molecule based on its molecular fingerprint, using structure and activity data available from the ChEMBL database. It then predicts the relevant bioactivity of a library of food compounds with known molecular structures from the FooDB database. The output is a list of food compounds with high confidence of eliciting relevant biological effects, along with their source foods and associated quantities in those foods, where available. Applying PhyteByte to the human PPARG gene, we identified irigenin, sesamin, fargesin, and delta-sanshool as putative agonists of PPARG, along with previously identified agonists of this important metabolic regulator. Conclusions PhyteByte identifies food-based compounds that are predicted to interact with specific protein targets. The identified relationships can be used to prioritize food compounds for experimental or epidemiological follow-up and can contribute to the rapid development of precision approaches to new nutraceuticals as well as personalized dietary planning.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?