Springer Nature
Browse

OsFPFL4 is Involved in the Root and Flower Development by Affecting Auxin Levels and ROS Accumulation in Rice (Oryza sativa)

Posted on 2020-01-08 - 04:55
Abstract Background FPF1 (flowering-promoting factor 1) is one of the important family involved in the genetic control of flowering time in plant. Until now, limited knowledge concerning FPF1 family in rice has been understood. Results As a homologue of AtFPF1, FPF1-like protein 4 of rice (OsFPFL4) is expressed in various tissues of plants. The functions of OsFPFL4 in rice were investigated by the reverse genetics approaches. Plants overexpressing OsFPFL4 have shorter primary root, more lateral roots and adventitious roots than wild type; however, RNA interference (RNAi) of OsFPFL4 significantly inhibits the growth of root system, and also delays the flowering time in rice. Interestingly, increased or repressed expression of OsFPFL4 leads to shrunken anthers and abnormal pollen grains. It is well recognized that auxin plays important roles in plant root and flower development, and the root elongation is also regulated by reactive oxygen species (ROS) homeostasis. Here, our results show that rice plants overexpressing OsFPFL4 accumulate more auxin in the shoot and root, whereas RNAi lines have less auxin than wild type. As expected, the transcript levels of genes responsible for auxin biosynthesis and polar transport are altered in these OsFPFL4 transgenic plants. As to ROS, slightly higher ROS levels were detected in overexpression root and inflorescence than the counterparts of wild type; however, the ROS levels were significantly increased in the RNAi lines, due to increased expression of ROS-producers and reduced expression of ROS-scavengers. Conclusion Our results reveal that OsFPFL4 is involved in modulating the root and flower development by affecting auxin and ROS homeostasis in rice plants. OsFPFL4 controls auxin accumulation via affecting auxin biosynthesis and transport, and also modulates ROS homeostasis by balancing ROS producing and scavenging. Thus, auxin-mediated ROS production might play a role in regulating redox status, which controls plant root and flower development.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?