Springer Nature

Oncolytic adenovirus encoding apolipoprotein A1 suppresses metastasis of triple-negative breast cancer in mice

Posted on 2024-04-03 - 03:43
Abstract Background Dysregulation of cholesterol metabolism is associated with the metastasis of triple-negative breast cancer (TNBC). Apolipoprotein A1 (ApoA1) is widely recognized for its pivotal role in regulating cholesterol efflux and maintaining cellular cholesterol homeostasis. However, further exploration is needed to determine whether it inhibits TNBC metastasis by affecting cholesterol metabolism. Additionally, it is necessary to investigate whether ApoA1-based oncolytic virus therapy can be used to treat TNBC. Methods In vitro experiments and mouse breast cancer models were utilized to evaluate the molecular mechanism of ApoA1 in regulating cholesterol efflux and inhibiting breast cancer progression and metastasis. The gene encoding ApoA1 was inserted into the adenovirus genome to construct a recombinant adenovirus (ADV-ApoA1). Subsequently, the efficacy of ADV-ApoA1 in inhibiting the growth and metastasis of TNBC was evaluated in several mouse models, including orthotopic breast cancer, spontaneous breast cancer, and human xenografts. In addition, a comprehensive safety assessment of Syrian hamsters and rhesus monkeys injected with oncolytic adenovirus was conducted. Results This study found that dysregulation of cholesterol homeostasis is critical for the progression and metastasis of TNBC. In a mouse orthotopic model of TNBC, a high-cholesterol diet promoted lung and liver metastasis, which was associated with keratin 14 (KRT14), a protein responsible for TNBC metastasis. Furthermore, studies have shown that ApoA1, a cholesterol reverse transporter, inhibits TNBC metastasis by regulating the cholesterol/IKBKB/FOXO3a/KRT14 axis. Moreover, ADV-ApoA1 was found to promote cholesterol efflux, inhibit tumor growth, reduce lung metastasis, and prolonged the survival of mice with TNBC. Importantly, high doses of ADV-ApoA1 administered intravenously and subcutaneously were well tolerated in rhesus monkeys and Syrian hamsters. Conclusions This study provides a promising oncolytic virus treatment strategy for TNBC based on targeting dysregulated cholesterol metabolism. It also establishes a basis for subsequent clinical trials of ADV-ApoA1 in the treatment of TNBC.


3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
AAPG Bulletin
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
Select your citation style and then place your mouse over the citation text to select it.


need help?