Springer Nature
Browse

Nitrogen-Doped Porous Carbon Nanosheets Strongly Coupled with Mo2C Nanoparticles for Efficient Electrocatalytic Hydrogen Evolution

Posted on 2019-10-23 - 08:23
Abstract Exploring earth-abundant and noble metal-free catalysts for water electrolysis is pivotal in renewable hydrogen production. Herein, a highly active electrocatalyst of nitrogen-doped porous carbon nanosheets coupled with Mo2C nanoparticles (Mo2C/NPC) was synthesized by a novel method with high BET surface area of 1380 m2 g−1 using KOH to activate carbon composite materials. The KOH plays a key role in etching out MoS2 to produce Mo precursor; simultaneously, it corrodes carbon to form porous structure and produce reducing gas such as H2 and CO. The resulting Mo2C/NPC hybrid demonstrated superior HER activity in acid solution, with the overpotential of 166 mV at current density of 10 mA cm−2, onset overpotential of 93 mV, Tafel slope of 68 mV dec−1, and remarkable long-term cycling stability. The present strategy may provide a promising strategy to fabricate other metal carbide/carbon hybrids for energy conversion and storage.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?