Springer Nature
Browse

Natural disease progression and novel survival prediction model for hepatocellular carcinoma with spinal metastases: a 10-year single-center study

Posted on 2020-06-21 - 03:49
Abstract Background Individual prediction of life expectancy in patients with spinal metastases from hepatocellular carcinoma (HCC) is key for optimal treatment selection, especially when identifying potential candidates for surgery. Most reported prognostic tools provide categorical predictions, and only a few include HCC-related factors. This study aimed to investigate the natural progression of the disease and develop a prognostic tool that is capable of providing individualized predictions. Methods Patients with HCC-derived metastatic spinal disease were identified from a retrospective cohort of patients with spinal metastases who were diagnosed at Chiang Mai University Hospital between 2006 and 2015. Kaplain–Meier methods and log-rank tests were used to statistically evaluate potential factors. Significant predictors from the univariable analysis were included in the flexible parametric survival regression for the development of a prognostic prediction model. Results Of the 1143 patients diagnosed with HCC, 69 (6%) had spinal metastases. The median survival time of patients with HCC after spinal metastases was 79 days. In the multivariable analysis, a total of 11 potential clinical predictors were included. After backward elimination, four final predictors remained: patients aged > 60 years, Karnofsky Performance Status, total bilirubin level, and multifocality of HCC. The model showed an acceptable discrimination at C-statistics 0.73 (95% confidence interval 0.68–0.79) and fair calibration. Conclusion Four clinical parameters were used in the development of the individual survival prediction model for patients with HCC-derived spinal metastases of Chiang Mai University or HCC-SM CMU model. Prospective external validation studies in a larger population are required prior to the clinical implication of the model.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?