Springer Nature
Browse

N6-Adenosine methylation on mRNA is recognized by YTH2 domain protein of human malaria parasite Plasmodium falciparum

Posted on 2020-09-01 - 04:04
Abstract Background Plasmodium falciparum exhibits high translational plasticity during its development in RBCs, yet the regulation at the post-transcriptional level is not well understood. The N6-methyl adenosine (m6A) is an important epigenetic modification primarily present on mRNA that controls the levels of transcripts and efficiency of translation in eukaryotes. Recently, the dynamics of m6A on mRNAs at all three developmental stages of P. falciparum in RBCs have been profiled; however, the proteins that regulate the m6A containing mRNAs in the parasites are unknown. Results Using sequence analysis, we computationally identified that the P. falciparum genome encodes two putative YTH (YT521-B Homology) domain-containing proteins, which could potentially bind to m6A containing mRNA. We developed a modified methylated RNA immunoprecipitation (MeRIP) assay using PfYTH2 and find that it binds selectively to m6A containing transcripts. The PfYTH2 has a conserved aromatic amino acid cage that forms the methyl-binding pocket. Through site-directed mutagenesis experiments and molecular dynamics simulations, we show that F98 residue is important for m6A binding on mRNA. Fluorescence depolarization assay confirmed that PfYTH2 binds to methylated RNA oligos with high affinity. Further, MeRIP sequencing data revealed that PfYTH2 has more permissive sequence specificity on target m6A containing mRNA than other known eukaryotic YTH proteins. Taken together, here we identify and characterize PfYTH2 as the major protein that could regulate m6A containing transcripts in P. falciparum. Conclusion Plasmodium spp. lost the canonical m6A-specific demethylases in their genomes, however, the YTH domain-containing proteins seem to be retained. This study presents a possibility that the YTH proteins are involved in post-transcriptional control in P. falciparum, and might orchestrate the translation of mRNA in various developmental stages of P. falciparum. This is perhaps the first characterization of the methyl-reading function of YTH protein in any parasites.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Epigenetics & Chromatin

AUTHORS (6)

Gayathri Govindaraju
Rajashekar Varma Kadumuri
Devadathan Valiyamangalath Sethumadhavan
C. A. Jabeena
Sreenivas Chavali
Arumugam Rajavelu

CATEGORIES

need help?