Springer Nature
Browse

Multiwalled carbon nanotubes decorated with bismuth (III) oxide for electrochemical detection of an antipyretic and analgesic drug paracetamol in biological samples

Posted on 2019-05-26 - 05:00
Abstract Background In the present work, an electrochemical sensor for detection of paracetamol was fabricated by modifying a glassy carbon electrode (GCE) using multiwalled carbon nanotube (MWCNT) decorated with bismuth oxide (Bi2O3) based on using the drop dry technique. Methods The prepared composite electrode was characterized by scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM–EDS), Fourier transform infrared spectroscopy (FT-IR), and cyclic voltammetry (CV). Electrochemical techniques such as cyclic voltammetry, chronoamperometry, and square wave voltammetry (SWV) were used to study the behavior of paracetamol. Results The modification process improved the redox kinetics of paracetamol as shown by increased peak currents. The peak current varied linearly with increment of paracetamol concentration in the range of 0.02 to 28 μM with a sensitivity of 1.133 μA μM−1. A detection limit of 0.0052 μM was obtained. Conclusion The proposed method was successfully applied to determination of paracetamol in biological samples with recoveries in the range 94.3–98.7%.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?