Springer Nature
Browse

Modeling and analysis of Hi-C data by HiSIF identifies characteristic promoter-distal loops

Posted on 2020-08-13 - 04:15
Abstract Current computational methods on Hi-C analysis focused on identifying Mb-size domains often failed to unveil the underlying functional and mechanistic relationship of chromatin structure and gene regulation. We developed a novel computational method HiSIF to identify genome-wide interacting loci. We illustrated HiSIF outperformed other tools for identifying chromatin loops. We applied it to Hi-C data in breast cancer cells and identified 21 genes with gained loops showing worse relapse-free survival in endocrine-treated patients, suggesting the genes with enhanced loops can be used for prognostic signatures for measuring the outcome of the endocrine treatment. HiSIF is available at https://github.com/yufanzhouonline/HiSIF .

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Genome Medicine

AUTHORS (9)

Yufan Zhou
Xiaolong Cheng
Yini Yang
Tian Li
Jingwei Li
Tim H.-M. Huang
Junbai Wang
Shili Lin
Victor X. Jin

CATEGORIES

need help?