Springer Nature
Browse

Mechanistic formation of hazardous molecular heterocyclic amines from high temperature pyrolysis of model biomass materials: cellulose and tyrosine

Posted on 2019-11-09 - 05:10
Abstract Background Research inventories on the co-pyrolysis of major biomass components such as cellulose with amino acid materials is scarce in literature despite the fact that such studies are critical in understanding toxic product relations from high temperature cooking, combustion of bio-fuels, cigarette smoking and forest fires. This paper explores, quantitatively, the yields of heterocyclic nitrogenated molecular reaction products of grave mutagenetic concern from the co-pyrolysis of model biomass materials; tyrosine and cellulose. Research has established that heterocyclic amines such as isocyanates are mutagens as well precursors for asthma, and other respiratory disorders. Methods An equimassic mixture of tyrosine and cellulose (50 ± 2 mg) by weight were pyrolyzed in a tubular quartz reactor in flowing nitrogen at 1 atm. Besides, varying combinations of tyrosine and cellulose in the ratios 3:1 and 1:3 were also explored for comparison. The reaction time was set at 2 s so as to simulate combustions events in nature. The pyrolysate was collected over 5 mL dichloromethane and characterized using a gas chromatograph coupled to a mass spectrometer detector. Results Evidently, it was noted that 1-methylindazole was released in high yields at 300 °C, constituting ~ 300 µg in the entire pyrolysis temperature range (200–700 °C). Nonetheless, isoindazole gave the highest yield ~ 730 µg while 1-naphthyl isocyanate gave a total yield of ~ 336 µg in the same temperature range. Remarkably, the change in char yield between 300 and 450 °C for the pyrolysis of 25% tyrosine in 75% cellulose was found to be ~ 48% whereas the change in char yield for the pyrolysis of 75% tyrosine in 25% cellulose was 49%. Conclusion The char and tar yields considered important residues of biomass burning have been reported in this study and found to be consistent with other research output in literature. The striking similarities of % yield of char across all temperatures for various combinations was the most significant observation in this investigation—char yield was independent of the mixing ratio during pyrolysis. From a mechanistic standpoint, it was noted that tyrosine inhibited cellulose based nitrogenated products. Thus N-products dominated the O-products.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?