Springer Nature
Browse

Mapping and characterization QTLs for phenological traits in seven pedigree-connected peach families

Posted on 2021-03-17 - 04:53
Abstract Background Environmental adaptation and expanding harvest seasons are primary goals of most peach [Prunus persica (L.) Batsch] breeding programs. Breeding perennial crops is a challenging task due to their long breeding cycles and large tree size. Pedigree-based analysis using pedigreed families followed by haplotype construction creates a platform for QTL and marker identification, validation, and the use of marker-assisted selection in breeding programs. Results Phenotypic data of seven F1 low to medium chill full-sib families were collected over 2 years at two locations and genotyped using the 9 K SNP Illumina array. Three QTLs were discovered for bloom date (BD) and mapped on linkage group 1 (LG1) (172–182 cM), LG4 (48–54 cM), and LG7 (62–70 cM), explaining 17–54%, 11–55%, and 11–18% of the phenotypic variance, respectively. The QTL for ripening date (RD) and fruit development period (FDP) on LG4 was co-localized at the central part of LG4 (40–46 cM) and explained between 40 and 75% of the phenotypic variance. Haplotype analyses revealed SNP haplotypes and predictive SNP marker(s) associated with desired QTL alleles and the presence of multiple functional alleles with different effects for a single locus for RD and FDP. Conclusions A multiple pedigree-linked families approach validated major QTLs for the three key phenological traits which were reported in previous studies across diverse materials, geographical distributions, and QTL mapping methods. Haplotype characterization of these genomic regions differentiates this study from the previous QTL studies. Our results will provide the peach breeder with the haplotypes for three BD QTLs and one RD/FDP QTL to create predictive DNA-based molecular marker tests to select parents and/or seedlings that have desired QTL alleles and cull unwanted genotypes in early seedling stages.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

BMC Genomics

AUTHORS (8)

Zena J. Rawandoozi
Timothy P. Hartmann
Silvia Carpenedo
Ksenija Gasic
Cassia da Silva Linge
Lichun Cai
Eric Van de Weg
David H. Byrne

CATEGORIES

need help?