Springer Nature
Browse

Low temperature CO oxidation by doped cerium oxide electrospun fibers

Posted on 2020-06-30 - 04:27
Abstract We investigated CO oxidation behavior of doped cerium oxide fibers. Electrospinning technique was used to fabricate the inorganic fibers after burning off polymer component at 600 °C in air. Cu, Ni, Co, Mn, Fe, and La were doped at 10 and 30 mol% by dissolving metal salts into the polymeric electrospinning solution. 10 mol% Cu-doped ceria fiber showed excellent catalytic activity for low temperature CO oxidation with 50% CO conversion at just 52 °C. This 10 mol% Cu-doped sample showed unexpected regeneration behavior under simple ambient air annealing at 400 °C. From the CO oxidation behavior of the 12 samples, we conclude that absolute oxygen vacancy concentration estimated by Raman spectroscopy is not a good indicator for low temperature CO oxidation catalysts unless extra care is taken such that the Raman signal reflects oxide surface status. The experimental trend over the six dopants showed limited agreement with theoretically calculated oxygen vacancy formation energy in the literature.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?