Springer Nature
Browse

Large Spin-Dependent Thermoelectric Effects in NiFe-based Interconnected Nanowire Networks

Posted on 2020-06-30 - 04:25
Abstract NiFe alloy and NiFe/Cu multilayered nanowire (NW) networks were grown using a template-assisted electrochemical synthesis method. The NiFe alloy NW networks exhibit large thermopower, which is largely preserved in the current perpendicular-to-plane geometry of the multilayered NW structure. Giant magneto-thermopower (MTP) effects have been demonstrated in multilayered NiFe/Cu NWs with a value of 25% at 300 K and reaching 60% around 100 K. A large spin-dependent Seebeck coefficient of –12.3 μV/K was obtained at room temperature. The large MTP effects demonstrate a magnetic approach to control thermoelectric properties of flexible devices based on NW networks.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?