Springer Nature
Browse

Improving guidewire-mediated steerability of a magnetically actuated flexible microrobot

Posted on 2018-12-13 - 05:00
Abstract Here, we develop a flexible microrobot enhancing the steerability of a conventional guidewire. To improve steerability, a microrobot is attached to the tip of the guidewire and guided using an external magnetic field generated by an electromagnetic coil system. The flexible microrobot is fabricated via replica-molding and features a body made of polydimethylsiloxane (PDMS) and a single permanent magnet. As the robot is made of a deformable material, it can be steered using a low-intensity external magnetic field; the robot can potentially be guided into the coronary artery. To study steering performance, we employed mathematical modeling and a finite element model (FEM), and performed experiments under various magnetic fields. We found that a mathematical model using the Euler–Bernoulli beam could not precisely calculate the deformation angles. The FEM more accurately estimated those angles. The deformation angle can be controlled from 0 to 80° at a magnetic field intensity of 15 mT. The trackability at angles of 45 and 80° of the guidewire-based microrobot was confirmed in vitro using a two-dimensional blood vessel phantom.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?