Springer Nature
Browse

Implementation of human factors engineering approach to improve environmental cleaning and disinfection in a medical center

Posted on 2020-01-17 - 09:49
Abstract Background Inadequate hospital cleaning may contribute to cross-transmission of pathogens. It is important to implement effective cleaning for the safe hospital environment. We conducted a three-phase study using human factors engineering (HFE) approach to enhance environmental cleanliness. Methods This study was conducted using a prospective interventional trial, and 28 (33.3%) of 84 wards in a medical center were sampled. The three-phases included pre-intervention analysis (Phase 1), implementing interventions by HFE principles (Phase 2), and programmatic analysis (Phase 3). The evaluations of terminal cleaning and disinfection were performed using the fluorescent marker, the adenosine triphosphate bioluminescence assay, and the aerobic colony count method simultaneously in all phases. Effective terminal cleaning and disinfection was qualified with the aggregate outcome of the same 10 high-touch surfaces per room. A score for each high-touch surface was recorded, with 0 denoting a fail and 10 denoting a pass by the benchmark of the evaluation method, and the total terminal cleaning and disinfection score (TCD score) was a score out of 100. Results In each phase, 840 high-touch surfaces were collected from 84 rooms after terminal cleaning and disinfection. After the interventions, the TCD score by the three evaluation methods all showed significant improved. The carriage incidence of multidrug-resistant organism (MDRO) decreased significantly from 4.1 per 1000 patient-days to 3.6 per 1000 patient-days (P = .03). Conclusion The HFE approach can improve the thoroughness and the effectiveness of terminal cleaning and disinfection, and resulted in a reduction of patient carriage of MDRO at hospitals. Larger studies are necessary to establish whether such efforts of cleanliness can reduce the incidence of healthcare-associated infection.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?