Imaging-based clusters in former smokers of the COPD cohort associate with clinical characteristics: the SubPopulations and intermediate outcome measures in COPD study (SPIROMICS)
Posted on 2019-07-15 - 05:00
Abstract Background Quantitative computed tomographic (QCT) imaging-based metrics enable to quantify smoking induced disease alterations and to identify imaging-based clusters for current smokers. We aimed to derive clinically meaningful sub-groups of former smokers using dimensional reduction and clustering methods to develop a new way of COPD phenotyping. Methods An imaging-based cluster analysis was performed for 406 former smokers with a comprehensive set of imaging metrics including 75 imaging-based metrics. They consisted of structural and functional variables at 10 segmental and 5 lobar locations. The structural variables included lung shape, branching angle, airway-circularity, airway-wall-thickness, airway diameter; the functional variables included regional ventilation, emphysema percentage, functional small airway disease percentage, Jacobian (volume change), anisotropic deformation index (directional preference in volume change), and tissue fractions at inspiration and expiration. Results We derived four distinct imaging-based clusters as possible phenotypes with the sizes of 100, 80, 141, and 85, respectively. Cluster 1 subjects were asymptomatic and showed relatively normal airway structure and lung function except airway wall thickening and moderate emphysema. Cluster 2 subjects populated with obese females showed an increase of tissue fraction at inspiration, minimal emphysema, and the lowest progression rate of emphysema. Cluster 3 subjects populated with older males showed small airway narrowing and a decreased tissue fraction at expiration, both indicating air-trapping. Cluster 4 subjects populated with lean males were likely to be severe COPD subjects showing the highest progression rate of emphysema. Conclusions QCT imaging-based metrics for former smokers allow for the derivation of statistically stable clusters associated with unique clinical characteristics. This approach helps better categorization of COPD sub-populations; suggesting possible quantitative structural and functional phenotypes.
CITE THIS COLLECTION
Haghighi, Babak; Choi, Sanghun; Choi, Jiwoong; Hoffman, Eric; Comellas, Alejandro; Newell, John; et al. (2019). Imaging-based clusters in former smokers of the COPD cohort associate with clinical characteristics: the SubPopulations and intermediate outcome measures in COPD study (SPIROMICS). figshare. Collection. https://doi.org/10.6084/m9.figshare.c.4577324.v1
or
Select your citation style and then place your mouse over the citation text to select it.
SHARE
Usage metrics

AUTHORS (23)
BH
Babak Haghighi
SC
Sanghun Choi
JC
Jiwoong Choi
EH
Eric Hoffman
AC
Alejandro Comellas
JN
John Newell
CL
Chang Lee
RB
R. Barr
EB
Eugene Bleecker
CC
Christopher Cooper
DC
David Couper
MH
Mei Han
NH
Nadia Hansel
RK
Richard Kanner
EK
Ella Kazerooni
EK
Eric Kleerup
FM
Fernando Martinez
WO
Wanda OâNeal
RP
Robert Paine
SR
Stephen Rennard