Evaluation of a decided sample size in machine learning applications
Posted on 2024-08-13 - 11:11
Abstract Background An appropriate sample size is essential for obtaining a precise and reliable outcome of a study. In machine learning (ML), studies with inadequate samples suffer from overfitting of data and have a lower probability of producing true effects, while the increment in sample size increases the accuracy of prediction but may not cause a significant change after a certain sample size. Existing statistical approaches using standardized mean difference, effect size, and statistical power for determining sample size are potentially biased due to miscalculations or lack of experimental details. This study aims to design criteria for evaluating sample size in ML studies. We examined the average and grand effect sizes and the performance of five ML methods using simulated datasets and three real datasets to derive the criteria for sample size. We systematically increase the sample size, starting from 16, by randomly sampling and examine the impact of sample size on classifiers’ performance and both effect sizes. Tenfold cross-validation was used to quantify the accuracy. Results The results demonstrate that the effect sizes and the classification accuracies increase while the variances in effect sizes shrink with the increment of samples when the datasets have a good discriminative power between two classes. By contrast, indeterminate datasets had poor effect sizes and classification accuracies, which did not improve by increasing sample size in both simulated and real datasets. A good dataset exhibited a significant difference in average and grand effect sizes. We derived two criteria based on the above findings to assess a decided sample size by combining the effect size and the ML accuracy. The sample size is considered suitable when it has appropriate effect sizes (≥ 0.5) and ML accuracy (≥ 80%). After an appropriate sample size, the increment in samples will not benefit as it will not significantly change the effect size and accuracy, thereby resulting in a good cost-benefit ratio. Conclusion We believe that these practical criteria can be used as a reference for both the authors and editors to evaluate whether the selected sample size is adequate for a study.
CITE THIS COLLECTION
DataCiteDataCite
3 Biotech3 Biotech
3D Printing in Medicine3D Printing in Medicine
3D Research3D Research
3D-Printed Materials and Systems3D-Printed Materials and Systems
4OR4OR
AAPG BulletinAAPG Bulletin
AAPS OpenAAPS Open
AAPS PharmSciTechAAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität HamburgAbhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)ABI Technik (German)
Academic MedicineAcademic Medicine
Academic PediatricsAcademic Pediatrics
Academic PsychiatryAcademic Psychiatry
Academic QuestionsAcademic Questions
Academy of Management DiscoveriesAcademy of Management Discoveries
Academy of Management JournalAcademy of Management Journal
Academy of Management Learning and EducationAcademy of Management Learning and Education
Academy of Management PerspectivesAcademy of Management Perspectives
Academy of Management ProceedingsAcademy of Management Proceedings
Academy of Management ReviewAcademy of Management Review
Rajput, Daniyal; Wang, Wei-Jen; Chen, Chun-Chuan (2023). Evaluation of a decided sample size in machine learning applications. figshare. Collection. https://doi.org/10.6084/m9.figshare.c.6580814.v1