Springer Nature
Browse

Enhanced biomass productivity of microalgae Nannochloropsis sp. in an airlift photobioreactor using low-frequency flashing light with blue LED

Posted on 2020-07-21 - 05:13
Abstract Microalgae Nannochloropsis sp. is a widely recognized renewable biodiesel feedstock. The ability of this microalgae to absorb CO2 constitutes an added value toward reducing global warming. However, the process of optimizing its growth still involves many challenges. Photoinhibition, which takes places during microalgae cultivation when using continuous lighting, constitutes an unresolved problem. Therefore, the optimum light/dark cycle method is considered necessary. The experiments were conducted using a designed, tubular airlift photobioreactor and blue, energy-saving, light-emitting diode (LED) lights for the purpose of internal illumination. We observed that a 45:15 min (light:dark) cycle increased the production of Nannochloropsis sp. biomass significantly, with a cell density, wet weight, and lipid content of 17 × 106 cell/ml, 7.11 g, and 10.1% dry weight, respectively. By using the blue LED lights, our designed, airlift photobioreactor increased cell growth by 70% compared to the growth of Nannochloropsis sp. in nature and produced 61 times higher lipid content compared to Nannochloropsis sp. that is exposed to natural light.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?