Comparison between machine learning methods for mortality prediction for sepsis patients with different social determinants
Posted on 2022-06-17 - 07:36
Abstract Background Sepsis is one of the most life-threatening circumstances for critically ill patients in the United States, while diagnosis of sepsis is challenging as a standardized criteria for sepsis identification is still under development. Disparities in social determinants of sepsis patients can interfere with the risk prediction performances using machine learning. Methods We analyzed a cohort of critical care patients from the Medical Information Mart for Intensive Care (MIMIC)-III database. Disparities in social determinants, including race, sex, marital status, insurance types and languages, among patients identified by six available sepsis criteria were revealed by forest plots with 95% confidence intervals. Sepsis patients were then identified by the Sepsis-3 criteria. Sixteen machine learning classifiers were trained to predict in-hospital mortality for sepsis patients on a training set constructed by random selection. The performance was measured by area under the receiver operating characteristic curve (AUC). The performance of the trained model was tested on the entire randomly conducted test set and each sub-population built based on each of the following social determinants: race, sex, marital status, insurance type, and language. The fluctuations in performances were further examined by permutation tests. Results We analyzed a total of 11,791 critical care patients from the MIMIC-III database. Within the population identified by each sepsis identification method, significant differences were observed among sub-populations regarding race, marital status, insurance type, and language. On the 5783 sepsis patients identified by the Sepsis-3 criteria statistically significant performance decreases for mortality prediction were observed when applying the trained machine learning model on Asian and Hispanic patients, as well as the Spanish-speaking patients. With pairwise comparison, we detected performance discrepancies in mortality prediction between Asian and White patients, Asians and patients of other races, as well as English-speaking and Spanish-speaking patients. Conclusions Disparities in proportions of patients identified by various sepsis criteria were detected among the different social determinant groups. The performances of mortality prediction for sepsis patients can be compromised when applying a universally trained model for each subpopulation. To achieve accurate diagnosis, a versatile diagnostic system for sepsis is needed to overcome the social determinant disparities of patients.
CITE THIS COLLECTION
DataCiteDataCite
3 Biotech3 Biotech
3D Printing in Medicine3D Printing in Medicine
3D Research3D Research
3D-Printed Materials and Systems3D-Printed Materials and Systems
4OR4OR
AAPG BulletinAAPG Bulletin
AAPS OpenAAPS Open
AAPS PharmSciTechAAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität HamburgAbhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)ABI Technik (German)
Academic MedicineAcademic Medicine
Academic PediatricsAcademic Pediatrics
Academic PsychiatryAcademic Psychiatry
Academic QuestionsAcademic Questions
Academy of Management DiscoveriesAcademy of Management Discoveries
Academy of Management JournalAcademy of Management Journal
Academy of Management Learning and EducationAcademy of Management Learning and Education
Academy of Management PerspectivesAcademy of Management Perspectives
Academy of Management ProceedingsAcademy of Management Proceedings
Academy of Management ReviewAcademy of Management Review
Wang, Hanyin; Li, Yikuan; Naidech, Andrew; Luo, Yuan (2022). Comparison between machine learning methods for mortality prediction for sepsis patients with different social determinants. figshare. Collection. https://doi.org/10.6084/m9.figshare.c.6051531.v1