Springer Nature
Browse

Coinfections identified from metagenomic analysis of cervical lymph nodes from tularemia patients

Posted on 2018-07-11 - 05:00
Abstract Background Underlying coinfections may complicate infectious disease states but commonly go unnoticed because an a priori clinical suspicion is usually required so they can be detected via targeted diagnostic tools. Shotgun metagenomics is a broad diagnostic tool that can be useful for identifying multiple microbes simultaneously especially if coupled with lymph node aspirates, a clinical matrix known to house disparate pathogens. The objective of this study was to analyze the utility of this unconventional diagnostic approach (shotgun metagenomics) using clinical samples from human tularemia cases as a test model. Tularemia, caused by the bacterium Francisella tularensis, is an emerging infectious disease in Turkey. This disease commonly manifests as swelling of the lymph nodes nearest to the entry of infection. Because swollen cervical nodes are observed from many different types of human infections we used these clinical sample types to analyze the utility of shotgun metagenomics. Methods We conducted an unbiased molecular survey using shotgun metagenomics sequencing of DNA extracts from fine-needle aspirates of neck lymph nodes from eight tularemia patients who displayed protracted symptoms. The resulting metagenomics data were searched for microbial sequences (bacterial and viral). Results F. tularensis sequences were detected in all samples. In addition, we detected DNA of other known pathogens in three patients. Both Hepatitis B virus (HBV) and Human Parvovirus B-19 were detected in one individual and Human Parvovirus B-19 alone was detected in two other individuals. Subsequent PCR coupled with Sanger sequencing verified the metagenomics results. The HBV status was independently confirmed via serological diagnostics, despite evading notice during the initial assessment. Conclusion Our data highlight that shotgun metagenomics of fine-needle lymph node aspirates is a promising clinical diagnostic strategy to identify coinfections. Given the feasibility of the diagnostic approach demonstrated here, further steps to promote integration of this type of diagnostic capability into mainstream clinical practice are warranted.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?