Springer Nature
Browse

Cis-regulatory analysis of Onecut1 expression in fate-restricted retinal progenitor cells

Posted on 2020-03-20 - 04:55
Abstract Background The vertebrate retina consists of six major classes of neuronal cells. During development, these cells are generated from a pool of multipotent retinal progenitor cells (RPCs) that express the gene Vsx2. Fate-restricted RPCs have recently been identified, with limited mitotic potential and cell fate possibilities compared to multipotent RPCs. One population of fate-restricted RPCs, marked by activity of the regulatory element ThrbCRM1, gives rise to both cone photoreceptors and horizontal cells. These cells do not express Vsx2, but co-express the transcription factors (TFs) Onecut1 and Otx2, which bind to ThrbCRM1. The components of the gene regulatory networks that control the transition from multipotent to fate-restricted gene expression are not known. This work aims to identify and evaluate cis-regulatory elements proximal to Onecut1 to identify the gene regulatory networks involved in RPC fate-restriction. Method We identified regulatory elements through ATAC-seq and conservation, followed by reporter assays to screen for activity based on temporal and spatial criteria. The regulatory elements of interest were subject to deletion and mutation analysis to identify functional sequences and evaluated by quantitative flow cytometry assays. Finally, we combined the enhancer::reporter assays with candidate TF overexpression to evaluate the relationship between the TFs, the enhancers, and early vertebrate retinal development. Statistical tests included ANOVA, Kruskal-Wallis, or unpaired t-tests. Results Two regulatory elements, ECR9 and ECR65, were identified to be active in ThrbCRM1(+) restricted RPCs. Candidate bHLH binding sites were identified as critical sequences in both elements. Overexpression of candidate bHLH TFs revealed specific enhancer-bHLH interactions. Nhlh1 overexpression expanded ECR65 activity into the Vsx2(+) RPC population, and overexpression of NeuroD1/NeuroG2/NeuroD4 had a similar effect on ECR9. Furthermore, bHLHs that were able to activate ectopic ECR9 reporter were able to induce endogenous Otx2 expression. Conclusions This work reports a large-scale screen to identify spatiotemporally specific regulatory elements near the Onecut1 locus. These elements were used to identify distinct populations in the developing retina. In addition, fate-restricted regulatory elements responded differentially to bHLH factors, and suggest a role for retinal bHLHs upstream of the Otx2 and Onecut1 genes during the formation of restricted RPCs from multipotent RPCs.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Neural Development

AUTHORS (8)

Sruti Patoori
Nathalie Jean-Charles
Ariana Gopal
Sacha Sulaiman
Sneha Gopal
Brian Wang
Benjamin Souferi
Mark M. Emerson

CATEGORIES

need help?