Characterization of polycystic ovary syndrome among Flo app users around the world
Posted on 2021-03-04 - 04:34
Abstract Background Polycystic ovary syndrome (PCOS) is a complex and multi-faceted endocrine disorder that affects 5–20% of women. Literature is limited regarding potentially differing PCOS phenotypes among women around the world. Objective To use Flo app technology to understand the multifaceted characteristics of PCOS across several countries and identify contributing risk factors to the development of this condition. Study design Flo is a widely used female health and wellbeing app with period tracking functionality that provides a globally representative and medically unbiased perspective on PCOS symptomatology. A chatbot dialog on PCOS was subsequently administered on the Flo application (app) to users from 142 countries (with at least 100 respondents) who have the app running in English during September–October 2019. Results For analyses, we selected the five countries with the greatest number of respondents: US (n = 243,238), UK (n = 68,325), India (n = 40,092), Philippines (n = 35,131), and Australia (n = 29,926). Bloating was the most frequently reported symptom among PCOS-positive women and appeared to be the main predictor of PCOS in our model (odds ratio 3·76 [95% CI 3·60–3·94]; p < 0·0001). Additional top predictors of PCOS are high blood cholesterol and glucose levels. As BMI increased, the percentage of women who reported a physician-confirmed PCOS diagnosis also increased. However, women in India did not follow this trend. Conclusion Our findings are based on the largest known PCOS dataset and indicate that symptoms are more complex than previously understood. The most frequently reported symptoms (bloating, facial hirsutism, irregular cycles, hyperpigmentation, and baldness) are broader than those included in the Rotterdam criteria. Future work should reevaluate and refine the criteria utilized in PCOS diagnosis.
CITE THIS COLLECTION
DataCiteDataCite
3 Biotech3 Biotech
3D Printing in Medicine3D Printing in Medicine
3D Research3D Research
3D-Printed Materials and Systems3D-Printed Materials and Systems
4OR4OR
AAPG BulletinAAPG Bulletin
AAPS OpenAAPS Open
AAPS PharmSciTechAAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität HamburgAbhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)ABI Technik (German)
Academic MedicineAcademic Medicine
Academic PediatricsAcademic Pediatrics
Academic PsychiatryAcademic Psychiatry
Academic QuestionsAcademic Questions
Academy of Management DiscoveriesAcademy of Management Discoveries
Academy of Management JournalAcademy of Management Journal
Academy of Management Learning and EducationAcademy of Management Learning and Education
Academy of Management PerspectivesAcademy of Management Perspectives
Academy of Management ProceedingsAcademy of Management Proceedings
Academy of Management ReviewAcademy of Management Review
Jain, Tarun; Negris, Olivia; Brown, Dannielle; Galic, Isabel; Salimgaraev, Rodion; Zhaunova, Liudmila (2021). Characterization of polycystic ovary syndrome among Flo app users around the world. figshare. Collection. https://doi.org/10.6084/m9.figshare.c.5326089.v1