Springer Nature
Browse

Can pre-trained convolutional neural networks be directly used as a feature extractor for video-based neonatal sleep and wake classification?

Posted on 2020-11-05 - 04:38
Abstract Objective In this paper, we propose to evaluate the use of pre-trained convolutional neural networks (CNNs) as a features extractor followed by the Principal Component Analysis (PCA) to find the best discriminant features to perform classification using support vector machine (SVM) algorithm for neonatal sleep and wake states using Fluke® facial video frames. Using pre-trained CNNs as a feature extractor would hugely reduce the effort of collecting new neonatal data for training a neural network which could be computationally expensive. The features are extracted after fully connected layers (FCL’s), where we compare several pre-trained CNNs, e.g., VGG16, VGG19, InceptionV3, GoogLeNet, ResNet, and AlexNet. Results From around 2-h Fluke® video recording of seven neonates, we achieved a modest classification performance with an accuracy, sensitivity, and specificity of 65.3%, 69.8%, 61.0%, respectively with AlexNet using Fluke® (RGB) video frames. This indicates that using a pre-trained model as a feature extractor could not fully suffice for highly reliable sleep and wake classification in neonates. Therefore, in future work a dedicated neural network trained on neonatal data or a transfer learning approach is required.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

BMC Research Notes

AUTHORS (11)

Muhammad Awais
Xi Long
Bin Yin
Chen Chen
Saeed Akbarzadeh
Saadullah Farooq Abbasi
Muhammad Irfan
Chunmei Lu
Xinhua Wang
Laishuan Wang
Wei Chen
need help?