Springer Nature
Browse

Building houses and managing lawns could limit yard soil carbon for centuries

Posted on 2019-08-17 - 04:24
Abstract Background Comparisons of soil carbon (C) pools across land uses can be confounded by site-specific history. To better quantify the response of soil C pools to residential development and use, we compared yard soils (n = 20) to adjacent mown fields and second-growth forests within land-use clusters (LUC; n = 12). Land uses within clusters shared site-specific legacies (land use and other soil forming history) prior to residential development (15–227 years ago). We analyzed soil cores to 60-cm depth for carbon, nitrogen, and bulk density. Within one LUC, we monitored soil dissolved organic carbon, moisture, and thermal regimes to explain soil C dynamics. Results We accounted for pre-development legacies to test how present uses affect soil properties. We found that yard soil C pools to 60-cm depth (9.07 ± 0.32 kg C m−2; mean ± SE) were smaller than fields (10.26 ± 0.44 kg C m−2) and forests (10.62 ± 0.87 kg C m−2). Fields contained more nitrogen to 60-cm depth (0.78 ± 0.043 kg N m−2) than yards (0.68 ± 0.030 kg N m−2) and forests (0.69 ± 0.057 kg N m−2). Time since development predicted decreased yard and field soil C/N, field soil N accumulation, and reduced yard bulk density. In old yards (> 150 years), where residents in recent times mowed monthly to bimonthly and left clippings on the lawn, there was evidence of soil C and N gains relative to old commercially managed yards mown weekly with clippings exported. Conclusions Our study suggests land conversion to yard can limit soil C pools for centuries, with contemporary management key to that trajectory. Our research points to the importance of accounting for pre-development legacies to reveal the response of soil properties to land conversion and present use. This work can inform policies and land use intended to enhance the soil C sink and minimize development-related soil C losses.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?