Advances and prospects of multi-modal ophthalmic artificial intelligence based on deep learning: a review
Posted on 2024-10-01 - 04:42
Abstract Background In recent years, ophthalmology has emerged as a new frontier in medical artificial intelligence (AI) with multi-modal AI in ophthalmology garnering significant attention across interdisciplinary research. This integration of various types and data models holds paramount importance as it enables the provision of detailed and precise information for diagnosing eye and vision diseases. By leveraging multi-modal ophthalmology AI techniques, clinicians can enhance the accuracy and efficiency of diagnoses, and thus reduce the risks associated with misdiagnosis and oversight while also enabling more precise management of eye and vision health. However, the widespread adoption of multi-modal ophthalmology poses significant challenges. Main text In this review, we first summarize comprehensively the concept of modalities in the field of ophthalmology, the forms of fusion between modalities, and the progress of multi-modal ophthalmic AI technology. Finally, we discuss the challenges of current multi-modal AI technology applications in ophthalmology and future feasible research directions. Conclusion In the field of ophthalmic AI, evidence suggests that when utilizing multi-modal data, deep learning-based multi-modal AI technology exhibits excellent diagnostic efficacy in assisting the diagnosis of various ophthalmic diseases. Particularly, in the current era marked by the proliferation of large-scale models, multi-modal techniques represent the most promising and advantageous solution for addressing the diagnosis of various ophthalmic diseases from a comprehensive perspective. However, it must be acknowledged that there are still numerous challenges associated with the application of multi-modal techniques in ophthalmic AI before they can be effectively employed in the clinical setting.
CITE THIS COLLECTION
DataCiteDataCite
3 Biotech3 Biotech
3D Printing in Medicine3D Printing in Medicine
3D Research3D Research
3D-Printed Materials and Systems3D-Printed Materials and Systems
4OR4OR
AAPG BulletinAAPG Bulletin
AAPS OpenAAPS Open
AAPS PharmSciTechAAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität HamburgAbhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)ABI Technik (German)
Academic MedicineAcademic Medicine
Academic PediatricsAcademic Pediatrics
Academic PsychiatryAcademic Psychiatry
Academic QuestionsAcademic Questions
Academy of Management DiscoveriesAcademy of Management Discoveries
Academy of Management JournalAcademy of Management Journal
Academy of Management Learning and EducationAcademy of Management Learning and Education
Academy of Management PerspectivesAcademy of Management Perspectives
Academy of Management ProceedingsAcademy of Management Proceedings
Academy of Management ReviewAcademy of Management Review
Wang, Shaopan; He, Xin; Jian, Zhongquan; Li, Jie; Xu, Changsheng; Chen, Yuguang; et al. (2024). Advances and prospects of multi-modal ophthalmic artificial intelligence based on deep learning: a review. figshare. Collection. https://doi.org/10.6084/m9.figshare.c.7474234.v1