Springer Nature
Browse

A paleomagnetic record of the early Matuyama chron including the Réunion subchron and the onset Olduvai boundary: High-resolution magnetostratigraphy and insights from transitional geomagnetic fields

Posted on 2020-08-09 - 03:20
Abstract We present a novel paleomagnetic record for the lower Matuyama chronozone, which includes the Réunion subchronozone and the lower Olduvai polarity reversal, from a continuous section of a 168-m-thick on-land marine succession in the southernmost part of the Boso Peninsula, central Japan. In this section, the Réunion subchronozone and the lower Olduvai reversal are observed at 38.6–44.6 m and 142.0 m, respectively. The average sedimentation rates between the lower and upper Réunion boundaries and between the upper Réunion boundary and lower Olduvai boundary are calculated as 25 cm/ky and 57 cm/ky, respectively. The virtual geomagnetic pole (VGP), observed in the Boso Peninsula, at both the upper and lower Réunion boundaries passed across the equator within a similar longitudinal band over Africa. Immediately below the upper boundary, between 43.0 and 43.5 m, the VGP settled in a cluster area around China. Relative paleointensity (RPI) values for the entire Réunion interval are generally lower than the average for the entire interval from the Réunion to the lower Olduvai subchronozone. Conversely, the VGP for the lower Olduvai reversal boundary did not pass across the equator within a narrow longitudinal band but settled in several cluster areas; i.e., the southern Indian Ocean, North America, and the southern South Pacific Ocean off South America. The VGP then moved rapidly between the clusters. The locations of VGP cluster areas in the lower Olduvai reversal seem to coincide with areas where a vertical component of the present geomagnetic non-axial dipole (NAD) field is dominant. During the reversal, the RPI declined rapidly and recovered slowly as the VGP moved rapidly between cluster areas. Our new paleomagnetic data are one of the most detailed records for those geomagnetic reversals from marine sediments, and will, therefore, help to understand the dynamics of the geomagnetic reversals.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?