Springer Nature
Browse

A clinically validated whole genome pipeline for structural variant detection and analysis

Posted on 2019-07-16 - 05:00
Abstract Background With the continuing decrease in cost of whole genome sequencing (WGS), we have already approached the point of inflection where WGS testing has become economically feasible, facilitating broader access to the benefits that are helping to define WGS as the new diagnostic standard. WGS provides unique opportunities for detection of structural variants; however, such analyses, despite being recognized by the research community, have not previously made their way into routine clinical practice. Results We have developed a clinically validated pipeline for highly specific and sensitive detection of structural variants basing on 30X PCR-free WGS. Using a combination of breakpoint analysis of split and discordant reads, and read depth analysis, the pipeline identifies structural variants down to single base pair resolution. False positives are minimized using calculations for loss of heterozygosity and bi-modal heterozygous variant allele frequencies to enhance heterozygous deletion and duplication detection respectively. Compound and potential compound combinations of structural variants and small sequence changes are automatically detected. To facilitate clinical interpretation, identified variants are annotated with phenotype information derived from HGMD Professional and population allele frequencies derived from public and Variantyx allele frequency databases. Single base pair resolution enables easy visual inspection of potentially causal variants using the IGV genome browser as well as easy biochemical validation via PCR. Analytical and clinical sensitivity and specificity of the pipeline has been validated using analysis of Genome in a Bottle reference genomes and known positive samples confirmed by orthogonal sequencing technologies. Conclusion Consistent read depth of PCR-free WGS enables reliable detection of structural variants of any size. Annotation both on gene and variant level allows clinicians to match reported patient phenotype with detected variants and confidently report causative finding in all clinical cases used for validation.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?