Springer Nature
Browse

ACE inhibitory peptides in standard and fermented deer velvet: an in silico and in vitro investigation

Posted on 2019-12-06 - 04:45
Abstract Background The use of deer velvet antler (DVA) as a potent traditional medicine ingredient goes back for over 2000 years in Asia. Increasingly, though, DVA is being included as a high protein functional food ingredient in convenient, ready to consume products in Korea and China. As such, it is a potential source of endogenous bioactive peptides and of ‘cryptides’, i.e. bioactive peptides enzymatically released by endogenous proteases, by processing and/or by gastrointestinal digestion. Fermentation is an example of a processing step known to release bioactive peptides from food proteins. In this study, we aimed to identify in silico bioactive peptides and cryptides in DVA, before and after fermentation, and subsequently to validate the major predicted bioactivity by in vitro analysis. Methods Peptides that were either free or located within proteins were identified in the DVA samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by database searching. Bioactive peptides and cryptides were identified in silico by sequence matching against a database of known bioactive peptides. Angiotensin-converting enzyme (ACE) inhibitory activity was measured by a colorimetric method. Results Three free bioactive peptides (LVVYPW, LVVYPWTQ and VVYPWTQ) were solely found in fermented DVA, the latter two of which are known ACE inhibitors. However matches to multiple ACE inhibitor cryptides were obtained within protein and peptide sequences of both unfermented and fermented DVA. In vitro analysis showed that the ACE inhibitory activity of DVA was more pronounced in the fermented sample, but both unfermented and fermented DVA had similar activity following release of cryptides by simulated gastrointestinal digestion. Conclusions DVA contains multiple ACE inhibitory peptide sequences that may be released by fermentation or following oral consumption, and which may provide a health benefit through positive effects on the cardiovascular system. The study illustrates the power of in silico combined with in vitro methods for analysis of the effects of processing on bioactive peptides in complex functional ingredients like DVA.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?