12989_2020_388_MOESM1_ESM.pdf (903.23 kB)
Download fileAdditional file 1 of Neuropathology changed by 3- and 6-months low-level PM2.5 inhalation exposure in spontaneously hypertensive rats
journal contribution
posted on 27.11.2020, 04:50 authored by Hsiao-Chi Chuang, Hsin-Chang Chen, Pei-Jui Chai, Ho-Tang Liao, Chang-Fu Wu, Chia-Ling Chen, Ming-Kai Jhan, Hui-I Hsieh, Kuen-Yuh Wu, Ta-Fu Chen, Tsun-Jen ChengAdditional file 1: Table S1. Meteorological and gaseous data measured by the EPA Guting air quality monitoring stations during the study period. Figure S1. Spectrums of MDA analysed by LC-MS/MS. Figure S2. Effects (3- and 6-months exposure) of PM2.5 on the inflammatory infiltration of lungs in SH rats. Subpleural alveolar infiltration of mononuclear cells was observed in the lungs after 3- and 6-months exposure of HEPA and/or PM2.5. Figure S3. Alteration in body weight of SH rats between HEPA (control) and PM2.5 (exposure) groups after 6-months exposure. Figure S4. IHC images of total Tau (t-Tau) in the cerebellum, hippocampus, and cortex of SH rats after 6 months of exposure to HEPA (control) and PM2.5 (exposure). Scar bar is 50 μm. Figure S5. Chronic effects (6-months exposure) of PM2.5 on the histological changes of cerebellum, hippocampus, and cortex in SH rats. Scale bar: 200 μm.
Funding
Ministry of Science and Technology, Taiwan
History
References
- 10.1016/j.jocn.2017.04.028
- 10.1016/j.tins.2009.05.009
- 10.1289/ehp.1002767
- 10.1001/archinternmed.2011.683
- 10.1186/1743-8977-7-12
- 10.1289/ehp.1002986
- 10.1016/j.etap.2018.06.007
- 10.1016/j.toxlet.2013.07.012
- 10.1101/cshperspect.a006189
- 10.1016/S0002-9440(10)62366-8
- 10.3389/fneur.2013.00122
- 10.1038/srep33727
- 10.1016/j.freeradbiomed.2019.03.008
- 10.1111/ejn.12169
- 10.3109/08958370902882713
- 10.1080/08958370490439597
- 10.1016/j.envres.2018.06.027
- 10.3389/fneur.2018.00162
- 10.1016/j.envres.2017.10.029
- 10.1161/HYPERTENSIONAHA.115.05524
- 10.1007/s40292-015-0108-1
- 10.1186/1476-069X-13-38
- 10.1016/j.envint.2017.08.020
- 10.3233/JAD-140855
- 10.1016/j.jenvman.2017.02.059
- 10.1016/j.scitotenv.2011.07.041
- 10.1016/j.envpol.2018.11.035
- 10.1016/j.envint.2018.10.055
- 10.1038/s41598-018-23885-3
- 10.1186/s12989-018-0288-7
- 10.1289/ehp.9821
- 10.1539/joh.47.471
- 10.1289/ehp.1002831
- 10.3233/JAD-2010-1396
- 10.1093/toxsci/kfz025
- 10.1038/mp.2011.76
- 10.1186/s12989-019-0293-5
- 10.1212/WNL.64.8.E28
- 10.1016/j.cger.2009.03.002
- 10.31887/DCNS.2002.4.3/tsteimer
- 10.2217/17460875.2.4.403
- 10.1289/ehp.02110749
- 10.1289/ehp.97105s51285
- 10.1016/j.atmosenv.2008.07.030
- 10.1016/j.atmosenv.2008.01.004
- 10.3164/jcbn.14-10
- 10.1016/j.tox.2016.11.010
- 10.3109/08958370902936931
- 10.1289/EHP134
- 10.1289/EHP136
- 10.1016/j.nbd.2015.06.013
- 10.1016/j.freeradbiomed.2011.06.027
- 10.1007/s13670-014-0080-y
- 10.1038/nrneurol.2012.80
- 10.1038/s41598-017-09481-x
- 10.1007/s00401-008-0383-1
- 10.3389/fnagi.2015.00234
- 10.1016/j.envres.2018.06.027
- 10.1038/45257
- 10.1016/j.neuro.2016.08.006
- 10.1289/ehp.0800319
- 10.1016/j.taap.2014.10.005
- 10.1016/j.jpba.2012.03.036