Springer Nature
Browse
13036_2020_243_MOESM1_ESM.pdf (8.4 MB)

Additional file 1 of Development of a novel heterologous β-lactam-specific whole-cell biosensor in Bacillus subtilis

Download (8.4 MB)
journal contribution
posted on 2020-08-01, 07:11 authored by Nina Lautenschläger, Philipp F. Popp, Thorsten Mascher
Additional file 1: Figure S1. Disk diffusion assay with control strains tested with β-lactams and controls (BAC = bacitracin and H2O). Figure S2. a and b: Disk diffusion assay of the biosensors and controls with additional β- lactams, bacitracin and water. Figure S3. Disk diffusion assay with the inducible biosensor (TMB5610) and different inducer (xylose) concentrations (0–1%). Figure S4. Minimal inhibitory concentrations (MIC) for B. subtilis strains. Figure S5. (A)-(E): Growth (OD600nm) and luminescence signal (RLU/OD600nm) of Biosensor 1 in the presence of different β-lactams. Figure S6. (A)-(E): Growth (OD600nm) and luminescence signal (RLU/OD600nm) of Biosensor 2 in the presence of different β-lactams. Figure S7. (A)-(E): Growth (OD600nm) and luminescence signal (RLU/OD600nm) of control strains in response to different β-lactams. Figure S8. (A)-(E): Growth (OD600nm) and luminescence signal (RLU/OD600nm) of the inducible biosensor in response to β-lactams. Figure S9. Negative control (Bacitracin) from the dose response assay with the Biosensor 2 in ΔpenP (TMB5611). Figure S10. Results from the Dose response assay with Biosensor 1 in ΔpenP (TMB3713). Figure S11. Results from the Dose response assay with Biosensor 2 (TMB5608) Figure S12. Growth and luminescence signal of Biosensor 2 ΔpenP in response to other cell wall antibiotics. Figure S13. Screen for β-lactam production by Streptomyces soil isolates.

Funding

Deutsche Forschungsgemeinschaft

History