posted on 2021-03-09, 04:39authored bySaskia Ricks, Emily A. Kendall, David W. Dowdy, Jilian A. Sacks, Samuel G. Schumacher, Nimalan Arinaminpathy
Additional file 8: Figure S5. Sensitivity analysis to varying Ag-RDT sensitivity and specificity. As a focal model output, all figures show the proportion of simulations in which an Ag-RDT was favourable, with different algorithms labelled by the different line colours. Panels A-C show the sensitivity of Ag-RDT being varied between 75 and 95% across the hospital and community settings, assuming specificity remained fixed at 98%. Panels D-F show the specificity of Ag-RDT being varied between 98 and 100%, assuming sensitivity remained fixed at 80%. Similar to the analysis presented in the main text, we assumed that all individuals were isolated whilst waiting for a NAT result in the hospital setting and that no one isolated whilst awaiting a test result in the community setting. Results illustrate that, in a community setting, increasing Ag-RDT sensitivity increased the favourability of the “Ag-RDT only” and “confirm Ag-RDT negative” strategies (panel C). For example, the favourability of an algorithm that confirms an Ag-RDT negative result increased from 79% to 83% when sensitivity increased from 75% to 95%. Increasing sensitivity had little impact on the “confirm Ag-RDT positive” strategy; since the only costs incurred under a community setting was the cost of a test, a NAT-only strategy was often cheaper and averted more infectious days than the “confirm Ag-RDT positive” strategy (the cost of testing with an Ag-RDT and confirming a positive result with a NAT test makes it costly, and by re-testing a positive result with a NAT, the sensitivity of the algorithm was lower due to the imperfect sensitivity of NAT). Similar to the hospital setting, specificity had little impact on an algorithm’s favourability (panel F).
Funding
Foundation for Innovative New Diagnostics Wellcome Trust UK Medical Research Council Department for International Development, UK Government