posted on 2021-03-09, 04:39authored bySaskia Ricks, Emily A. Kendall, David W. Dowdy, Jilian A. Sacks, Samuel G. Schumacher, Nimalan Arinaminpathy
Additional file 3: Figure S1. Schematic illustration for visualising the value of an Ag-RDT-led strategy, relative to a scenario involving NAT and clinical judgement. Although the figure involves deaths averted, the same structure applies for averting infectious person-days. For a given set of parameters drawn from the parameter ranges shown in Table 2, we simulated the cost and impact of a given Ag-RDT-led strategy, and of a NAT-based testing strategy, both relative to a no-intervention scenario. This outcome was then represented in the figure by plotting the relative deaths averted by Ag-RDT vs NAT (horizontal axis) against the relative cost of the two strategies (vertical axis). Thus, for example, in the lower right quadrant, an Ag-RDT-led strategy would cost less, but have more impact, than NAT. The diagonal dashed line shows an important threshold: for points below this line, an Ag-RDT-led strategy would cost less per death averted than NAT, and vice versa. Overall, therefore, the shaded area shows the region in which an Ag-RDT would simultaneously cost less per death averted, and avert more deaths overall, than NAT. We denote this area as the ‘favourable region’ for an Ag-RDT, and elsewhere as ‘non-favourable’: in our current analysis we aim to identify the circumstances under which an Ag-RDT, of a given performance and cost, would occupy this region.
Funding
Foundation for Innovative New Diagnostics Wellcome Trust UK Medical Research Council Department for International Development, UK Government